BZOJ2115:[WC2011]Xor——题解】的更多相关文章

http://www.lydsy.com/JudgeOnline/problem.php?id=2115 边和点可以重复经过,那最后的路径一定是从1到n的一条路径加上许多环 dfs出任意一条路径的异或和.路径上所有环的异或和,加入线性基即可 #include<cstdio> #include<iostream> using namespace std; #define N 50001 #define M 100001 typedef long long LL; int n; ],n…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3915  Solved: 1633 [Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表…
bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢出就会出鬼 Code: //It is coded by Ning_Mew on 5.29 #include<bits/stdc++.h> #define LL long long using namespace std; const int maxn=5e4+7,maxm=1e5+7; int…
https://www.lydsy.com/JudgeOnline/problem.php?id=2115 https://www.luogu.org/problemnew/show/P4151 这道题当年还是新题,现在都成线性基套路题了. 参考:https://blog.sengxian.com/algorithms/linear-basis 一个1~n路径值可以拆成一条1~n的路径值^几个环(因为去到环和回来的路的值被异或回去了). 于是就变成了处理出所有环的异或值和所有1~n的无环路的异或…
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 Sample Output 6 HINT 正解:df…
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 Sample Output 6 HINT Solut…
网上到处都是题解,自己画个图也很好理解.虽然环的个数很多,但是都可以通过独立环之间异或出来,不用管. 独立环求法:生成树之后,每次向图里添加非树边(u,v),则这个独立环的异或和为sum[u]^sum[v]^w(u,v).sum[u]为从1到u的任意一条路径的异或和. #include<cstdio> using namespace std; #define N 50001 #define M 100001 typedef long long ll; ll w[M<<1],sum[…
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 Sample Output 6 HINT 解题思路:…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法,也许只需要找出一些东西,就可以把所有的走法用它们来异或表示出来: 再关注图上的环路,因为从 1 到 n 的不同路径也可以看作是经由 1 和 n 连接的环路,路径上也可能有环路: 发现对于环路的不同走法,就是把路与环的权值异或求最优值,重叠的部分异或了两次相当于不走: 于是问题转化为找出图上的所有环(…
[BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 Sam…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2512  Solved: 1049[Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表…
[BZOJ2115]Xor(线性基) 题面 BZOJ Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5714  Solved: 2420 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 Description: Input: 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1…
2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结…
2115: [Wc2011] Xor 链接 分析: 对于图中的一个环,是可以从1到这个环,转一圈然后在回到1的,所以可以一开始走很多个环,然后在走一条1到n的路径. 那么可以求出所有的环,加入到线性基中,然后任意一条1->n的路径,取一遍最大值. 如果1->n的路径就是最终要走的路径,那么就取到了.如果不是,这我们走的这条路径是p1,最终答案最大的路径是p2,那么p1和p2合起来就是个环,如果p2更优和这个环异或,就把p1消掉了. 代码: #include<cstdio> #inc…
Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Problem 2115. -- [Wc2011] Xor 2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5811  Solved: 2474[Submit][Status][Discuss] Description I…
一.题目 [Wc2011] Xor 二.分析 比较有意思的一题,这里也学到一个结论:$1$到$N$的任意一条路径异或和,可以是一个任意一条$1$到$N$的异或和与图中一些环的异或和组合得到.因为一个数异或自己等于$0$. 对于这题,需要把所有的简单环先全部求出来,可以用$DFS$,然后用任意一条$1$到$N$的路径和的值与所有简单环的异或的值一起构造线性基(如果有不在路径上的环也没关系,可以走到这个环的位置再回来,相当于到这个环起点的这条路径走了两次,异或一下就抵消了),然后就是求最大值了. 三…
题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. 输出 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. 样例输入 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 样例输出 6 题解 DFS树+高斯消元求线性基 首先肯定能够想到,1->n的路径一定是一条链+选…
题目大意:给出一个无向有权图,找出一条从1到n的路径,使得路径上权值的异或和最大,路径可以重复走 Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果) . Sample Input 5 71 2 21 3 22 4 12 5 14 5 35 3 44 3 2 Sample…
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车. Sample Input 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 Sample Output 6 HINT 想法 手动…
bzoj luogu sol 首先很显然的,答案等于1到n的任意一条路径的异或和与若干个环的异或和的异或和. 因为图是联通的,那么就可以从一个点走到任意一个想要走到的环上,走完这个环后原路返回,那么中间的路径刚好抵消,所以这样是成立的. 现在需要把所有环的异或和丢到一个线性基里面.在dfs的生成树上的每一条非树边(返祖边)都对应了一个环,直接丢进去就可以了. code #include<cstdio> #include<algorithm> #define ll long long…
www.lydsy.com/JudgeOnline/problem.php?id=2115 (题目链接) 题意 给出一张图,可能有重边和自环,在图中找出一条从1-n的路径,使得经过的路径的权值的异或和最大,每条边可以重复经过并且重复计算异或和. Solution 刚看到这道题,想了10分钟完全没有思路,于是就膜了题解. 我们先把图看成一棵树,那么我们所需要找出的路径可以分成一些环和一条从1-n的树上路径,至于树是怎么构造的以及那条从1-n的路径是怎么走的并不重要,因为我们可以通过在总路径上补环来…
http://www.lydsy.com/JudgeOnline/problem.php?id=2115 题意:给出一个n个点m条边的无向连通边加权图,求1-n的某条路径使得异或值最大(可以重复点可以重复边)(n<=50000, m<=100000) #include <bits/stdc++.h> using namespace std; const int N=50005, M=100015; typedef long long ll; struct E { int next,…
标题效果:鉴于无向图.右侧的每个边缘,求一个1至n路径,右上路径值XOR和最大 首先,一个XOR并能为一个路径1至n简单的路径和一些简单的XOR和环 我们开始DFS获得随机的1至n简单的路径和绘图环所有线性无关(两个或多个环异或得到) 然后在一些数中选出一个子集.使它们与一个给定的数的异或和最大,这就是高斯消元的问题了 利用高斯消元使每一位仅仅存在于最多一个数上 然后贪心求解就可以 #include<cstdio> #include<cstring> #include<ios…
啦啦啦 题意: N 个点M条边的边带权的无向图,求1到n一条XOR和最大的路径 感觉把学的东西都用上了.... 1到n的所有路径可以由一条1到n的简单路径异或上任意个简单环得到 证明: 如果环与路径有交,异或后那块交就没了,相当于那块走了环上的路径: 如果环与路径没交,就是走到环上走一圈在回来,一去一回其他的地方又没了. 求一棵生成树,然后每一条非树边构成一个环,一共$m-n+1$个环 然后答案就是任取一些环的异或和与1到n路径异或和异或的最大值啦 实现上注意: 1.求生成树和简单环的异或和一遍…
题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Solution\) 来找一些性质.从一个点出发,到达任意一个点后原路返回,那么得到的和仍为0.但是如果走完一个环后原路返回,则会得到这个环的Xor和. 那么从1点就可以得到任何一个环的Xor和.我们还需要一条1->n的路径,使得搭配上某些环后答案最大.于是我们就可以对环的权值构造线性基,拿路径Xor和在上面求最大…
题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的异或和最大. 题解 参考 https://blog.sengxian.com/algorithms/linear-basis 结论 答案=\(max_\{\)(某一条\(1\)到\(n\)的路径的异或和)\(\oplus\)(环\(i_1\)的异或和)\(\oplus\)(环\(i_2\)的异或和)…