hadoop MapReduce辅助排序解析】的更多相关文章

1.数据样本,w1.csv到w5.csv,每个文件数据样本2000条,第一列是年份从1990到2000随机,第二列数据从1-100随机,本例辅助排序目标是找出每年最大值,实际上结果每年最大就是100,但是这里通过mapreduce辅助排序方式来找. 1999,71 1994,57 1995,33 1993,44 1994,99 1994,83 1995,59 ... ... 2.核心概念: 1)分区,假设有海量的数据,为了增加并行度,按照hash算法将所有数据分区后,确保同一年的数据进入到同一个…
我们可能会有些需求要求MapReduce的输出全局有序,这里说的有序是指Key全局有序.但是我们知道,MapReduce默认只是保证同一个分区内的Key是有序的,但是不保证全局有序.基于此,本文提供三种方法来对MapReduce的输出进行全局排序. |文章目录| |: |1.生成测试数据 |2.使用一个Reduce进行排序 |3.自定义分区函数实现全局有序 1.生成测试数据 在介绍如何实现之前,我们先来生成一些测试数据,实现如下: #!/bin/sh for i in {1..100000};d…
需求:订单数据 求出每个订单中最贵的商品? 订单id正序,成交金额倒序. 结果文件三个,每个结果文件只要一条数据. 1.Mapper类 package com.css.order.mr; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org…
本文发表于本人博客. 今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区.排序.分组.规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始! 说到排序我们可以查看下hadoop源码里面的WordCount例子中对LongWritable类型定义,它实现抽象接口WritableComparable,代码如下: public interface WritableComparable<T> extends Writable, Comparable<T> { } pub…
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始. 首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下: /** * Define the comparator that controls which keys are grouped toge…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Partition的概念以及使用.(1)Partition的原理和作用        得到map给的记录后,…
辅助排序和二次排序案例(GroupingComparator) 1.需求 有如下订单数据 订单id 商品id 成交金额 0000001 Pdt_01 222.8 0000001 Pdt_05 25.8 0000002 Pdt_03 522.8 0000002 Pdt_04 122.4 0000002 Pdt_05 722.4 0000003 Pdt_01 222.8 0000003 Pdt_02 33.8 现在需要求出每一个订单中最贵的商品. 2.数据准备 GroupingComparator.…
转载:http://blog.tianya.cn/m/post.jsp?postId=53271442 1.MapReduce中数据流动 (1)最简单的过程:  map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce 2.Mapreduce中Partiti…
推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapreduce/05.%E6%98%8E%E6%98%9F%E5%BE%AE%E5%8D%9A%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90?dir=1&filepath=bigdata%2Fhadoop%2Fmapreduce%2F05.%E6%98%8E%E6%98%9F%E5%…