Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅老师的视频,就可以听懂个大概了.当然了还有莫凡的强化学习更具实战性,听莫凡的课基本上可以带我们入门. 术语和基本思想 基本组成: 1.actor (即policy gradient要学习的对象, 是我们可以控制的部分) 2.环境 environment (给定的,无法控制) 3.回报函数 rewar…
一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的action,还是根据ε-greedy policy以1-ε的概率选择使得action value 最大的action,action 的选择都离不开action value 的计算).即没有action value的估计值就无法进行action选择,也就没有Policy,这类方法被称为 value-ba…
1 算法的优缺点 1.1 优点 在DQN算法中,神经网络输出的是动作的q值,这对于一个agent拥有少数的离散的动作还是可以的.但是如果某个agent的动作是连续的,这无疑对DQN算法是一个巨大的挑战,为了解决这个问题,前辈们将基于值的方法改成了基于策略的方法,即输出动作的概率. 1.2 缺点 策略梯度算法应用未来损失的return作为更新迭代的依据,即在一个回合过后,在这一回合中,若执行的某一动作的动作价值R大,则会加在下一回合选择这一动作的概率,反之,若执行的某一动作的动作价值R小,则会在下…
深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://blog.openai.com/openai-baselines-ppo/ Code: https://github.com/openai/baselines Paper: https://arxiv.org/pdf/1707.06347.pdf Video Tutorials: https://ww…
论文为Google Brain在16年推出的使用强化学习的Neural Architecture Search方法,该方法能够针对数据集搜索构建特定的网络,但需要800卡训练一个月时间.虽然论文的思路有很多改进的地方,但该论文为AutoML的经典之作,为后面很多的研究提供了思路,属于里程碑式的论文,十分值得认真研读,后面读者会持续更新AutoML的论文,有兴趣的可以持续关注   来源:晓飞的算法工程笔记 公众号 论文:Neural Architecture Search with Reinfor…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent并在环境中活动.当每次行动过后,Agent接收到环境反馈.反馈包括回报Reward和环境的下个状态State,回报由模型设计者定义.如果类比人类学习自行车,可以将车从起始点到当前位置的距离定义为回报. 分类: 1)基于价值Value的强化学习算法 - Q-learning 基本思想:根据当前的状态,…
今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战>.本篇论文主要以扑克进行实验,探讨深度强化学习与普通强化学习相比的优势.研究此类游戏不只是可以让程序打赢人类大师,还可以帮助开发算法,应用于更复杂的真实世界环境中,例如机场和网络安全.金融和能源贸易.交通管制和疏导,帮助人们在不完美的信息和高维度信息状态空间中进行决策.深度强化学习不需要依赖人类专家的原有…
1.概述: QLearning基于值函数的方法,不同与policy gradient的方法,Qlearning是预测值函数,通过值函数来选择 值函数最大的action,而policy gradient直接预测出action. Q-learning 是一种基于值函数估计的强化学习方法,Policy Gradient是一种策略搜索强化学习方法. 两者是求解强化学习问题的不同方法,如果熟悉监督学习, 前者可类比Naive Bayes——通过估计后验概率来得到预测, 后者可类比SVM——不估计后验概率而…
完整代码:https://github.com/zle1992/Reinforcement_Learning_Game Policy Gradient  可以直接预测出动作,也可以预测连续动作,但是无法单步更新. QLearning  先预测出Q值,根据Q值选动作,无法预测连续动作.或者动作种类多的情况,但是可以单步更新. 一句话概括 Actor Critic 方法: 结合了 Policy Gradient (Actor) 和 Function Approximation (Critic) 的方…