动态规划(五)——坐标dp】的更多相关文章

[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(DP\),顾名思义就是利用斜率相关性质对 \(DP\) 进行优化. 斜率优化通常可以由两种方式来理解,需要灵活地运用数学上的数形结合,线性规划思想. 对于这样形式的 \(dp\) 方程:\(dp[i]=Min/Max(a[i]∗b[j]+c[j]+d[i])\),其中 \(b\) 严格单调递增. 该方…
动态规划篇--线性DP 本次我们介绍动态规划篇的线性DP,我们会从下面几个角度来介绍: 数字三角形 最长上升子序列I 最长上升子序列II 最长公共子序列 最短编辑距离 数字三角形 我们首先介绍一下题目: /*题目概述*/ 给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层 要求找出一条路径,使路径上的数字的和最大. 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 /*具体需求*/ // 输入格式 第一行包含整数 n,…
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to rea…
题目大意:有一个人要买b件商品,给出每件商品的编号,价格和数量,恰逢商店打折.有s种打折方式.问怎么才干使买的价格达到最低 解题思路:最多仅仅有五种商品.且每件商品最多仅仅有5个,所以能够用5维dp来表示.每一个维度都代表一件商品的数量 打折的方式事实上有b + s种.将每种商品单件卖的也算一种打折方式 这题有个坑点,就是b或者s有可能为0 #include<cstdio> #include<cstring> #include<algorithm> #include&l…
基于联通性的状态压缩动态规划是一类非常典型的状态压缩动态规划问题,由于其压缩的本质并不像是普通的状态压缩动态规划那样用0或者1来表示未使用.使用两种状态,而是使用数字来表示类似插头的状态,因此.它又被称作插头DP. 插头DP本质上是一类状态压缩DP,因此,依旧避免不了其指数级别的算法复杂度,即便如此,它依旧要比普通的搜索算法快非常多. [例]Postal Vans(USACO training 6.1.1) 有一个4*n的矩阵.从左上角出发,每次能够向四个方向走一步,求经过每一个格子恰好一次.再…
总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比较容易了 举个例子:有一个大小为n*n的农田,我们可以在任意处种田,现在来描述一下某一行的某种状态: 设n = 9: 有二进制数 100011011(九位),每一位表示该农田是否被占用,1表示用了,0表示没用,这样一种状态就被我们表示出来了:见下表 列 数 1 2 3 4 5 6 7 8 二进制 1…
一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息.在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解.依次解决各子问题,最后一个子问题就是初始问题的解. 由于动态规划解决…
https://www.cnblogs.com/31415926535x/p/10415694.html 线性dp是很基础的一种动态规划,,经典题和他的变种有很多,比如两个串的LCS,LIS,最大子序列和等等,, 线性dp是用来解决一些 线性区间上的最优化问题 ,, 学这里的东西我感觉主要要理解好问题的子问题来写出转移方程,,还有弄清具体的边界条件就行了,, LCS-最长公共子序列 分析 子序列指的是对于一个串,某些元素的排列与原串所在的顺序一致的串称为原串的一个子序列,,它与子串不同,子串必须…
这种动归有很多名字,插头DP是最常见的 还有基于连通性的动态规划 轮廓线动态规划等等 超小数据范围,网格图,连通性 可能算是状态压缩DP的一种变式 以前我了解的状压DP用于NP难题的小数据范围求解 这里说一下哈密顿回路的概念: 哈密顿回路: .指一个对图的每个顶点都只穿越一次的回路.也可以 定义为n+1个相邻顶点v0, v1, … ,vn, v0的一个序列,其中序列的第一个顶点和最后一个顶点是相同的,而其他n-1个顶点是互不相同的. .当这个图是加权图时,求该图的最短哈密顿回路,就是传说中的旅行…
之前做过的传纸条那道题就是双重动态规划的典型应用,题意就不描述了,直接贴一下以前写过的,经典代码 #include<iostream> using namespace std; ,maxm=; int MAX(int x,int y) { return x>y?x:y; } int MAX1(int x,int y,int z,int w) { return MAX(MAX(x,y),MAX(z,w)); } int m,n; ; // int a[maxm][maxn]; int f[…