pandas基础--数据结构:索引对象】的更多相关文章

pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引Index是跟序列和数据框密切相关的数据结构. 通常情况下,引入pandas的约定,只要在代码中看到pd,就要联想到pandas: import pandas as pd 一,数据结构 序列是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的.序…
Redis用到的底层数据结构有:简单动态字符串.双端链表.字典.压缩列表.整数集合.跳跃表等,Redis并没有直接使用这些数据结构来实现键值对数据库,而是基于这些数据结构创建了一个对象系统,这个系统包括字符串对象.列表对象.哈希对象.集合对象和有序结合对象共5种类型的对象.   1 简单动态字符串 redis自定义了简单动态字符串数据结构(sds),并将其作为默认字符串表示. struct sdshdr { unsigned int len; unsigned int free; char bu…
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Software: PyCharm Community Edition import pandas as pd import numpy as np import matplotlib.pyplot as plt obj=pd.Series(np.arange(4.),index=['a','b','c','d…
  层次化索引 层次化索引指你能在一个数组上拥有多个索引,例如: 有点像Excel里的合并单元格对么? 根据索引选择数据子集   以外层索引的方式选择数据子集: 以内层索引的方式选择数据: 多重索引Series转换为DataFrame   层次化索引在数据重塑和分组中扮演着很重要的角色,例如,上面的层次化索引数据可以转换为一个DataFrame: 对于一个DataFrame,横轴和竖轴都可以有层次化索引,例如: 重排分级顺序 根据索引交换 swaplevel()函数可以将两个级别的数据进行交换,…
参考文献 redis数据结构分析 Skip List(跳跃表)原理详解 redis 源码分析之内存布局 Redis 基础数据结构与对象 Redis设计与实现-第7章-压缩列表 在redis中构建了自己的底层数据结构:动态字符,双端链表,字典,压缩列表,整数集合和跳跃表等.通过这些数据结构,redis构造出字符串对象,列表对象,哈希对象,集合对象和有序集合对象这5种我们常用的数据结构.接下来将从底层数据结构开始,一步步介绍redis的数据结构的实现 动态字符串 在redis中并没有使用c语言原生的…
1.序言 如何切片,切块,以及通常获取和设置pandas对象的子集 2.索引的不同选择 对象选择已经有许多用户请求的添加,以支持更明确的基于位置的索引.Pandas现在支持三种类型的多轴索引. .loc主要是基于标签的,但也可以与布尔数组一起使用.当找不到物品时.loc会提高KeyError.允许的输入是: 单个标签,例如5或'a'(注意,它5被解释为索引的 标签.此用法不是索引的整数位置.). 列表或标签数组.['a', 'b', 'c'] 带标签的切片对象'a':'f'(注意,相反普通的Py…
引言 先介绍下 Pandas 的数据结构,毕竟数据结构是万物的基础. Pandas 有两种主要的数据结构: Series 和 DataFrame 模块导入 首先我们在代码中引入 Pandas 和 Numpy ,如下: import numpy as np import pandas as pd Series Series 可以简单的理解为一维数组,可以存储整数.浮点数.字符串.Python 对象等类型的数据. 这个概念有点像 Java 中的集合. 如果无法理解的话,那么可以看下面这个图(Exce…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…
创建一个Series,同时让pandas自动生成索引列 创建一个DataFrame数据框 查看数据 数据的简单统计 数据的排序 选择数据(类似于数据库中sql语句) 另外可以使用标签来选择 通过位置获取数据 布尔值索引 设定数值(类似于sql update 或者add) 缺失值处理 数据操作 统计个数与离散化 pandas 处理字符串(单独一个大的章节,这人不做详述) 数据合并 首先看concat合并数据框 merge方式合并(数据库中的join) Append方式合并数据 分组操作Groupb…
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数据集. 所以可以是如下的 dictionary 的形式: web_stats = {'Day':[1,2,3,4,5,6], 'Visitors':[43,34,65,56,29,76], 'Bounce Rate':[65,67,78,65,45,52]} 我们可以通过如下方式把这个 dictio…