pandas基础--缺失数据处理】的更多相关文章

完整资料:[数据挖掘入门介绍] (https://github.com/YouChouNoBB/data-mining-introduction) # coding=utf-8 # @author: bryan import pandas as pd import numpy as np import pymysql #缩写 # df 任意的Pandas DataFrame对象 # s 任意的Pandas Series对象,表示一列 #导入数据 filename='D:/IJCAI/file.c…
数据丢失(缺失)在现实生活中总是一个问题. 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题. 在这些领域,缺失值处理是使模型更加准确和有效的重点. 使用重构索引(reindexing),创建了一个缺少值的DataFrame. 在输出中,NaN表示不是数字的值. 一.检查缺失值 为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法  示例1…
Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], columns=['A','B','C','D','E']) df1 df1 = df.reindex(index=dates[0:4], columns=['A','B','C','D']+['E']) df1 df1 = df.reindex(index=dates[0:4], columns=li…
Pandas--"大熊猫"基础 Series Series: pandas的长枪(数据表中的一列或一行,观测向量,一维数组...) Series1 = pd.Series(np.random.randn(4)) print Series1,type(Series1) print Series1.index print Series1.values 输出结果: 0 -0.676256 1 0.533014 2 -0.935212 3 -0.940822 dtype: float64 &l…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域.在Spark中,python程序可以方便修改,省去java和scala等的打包环节,如果需要导出文件,可以将数据转为pandas再保存到csv,excel等. 1.Pandas是什么? pandas是一个强大的Python数据分析工具包,是一个提供快速,灵活和表达性数据结构的python包,旨在使…
pandas 是一个基于 Numpy 构建, 强大的数据分析工具包 主要功能 独特的数据结构 DataFrame, Series 集成时间序列功能 提供丰富的数学运算操作 灵活处理缺失数据 Series 一维数组 Series 是一种类似于一维数组的对象, 由一组数据和一组与之相关的数据标签(索引)组成 创建方式 pd.Series([4, 7 ,5, -3]) pd.Series([4, 7 ,5, -3], index=['a', 'b', 'c', 'd']) pd.Series({'a'…
1.数据概览 第一步当然是把缺失的数据找出来, Pandas 找缺失数据可以使用 info() 这个方法(这里选用的数据源还是前面一篇文章所使用的 Excel ,小编这里简单的随机删除掉几个数据) import pandas as pd # 相对路径 df = pd.read_excel("result_data.xlsx") print(df) # 输出结果 plantform read_num fans_num rank_num like_num create_date 0 cnb…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…