1,为什么需要hadoop 数据分析者面临的问题 数据日趋庞大,读写都出现性能瓶颈: 用户的应用和分析结果,对实时性和响应时间要求越来越高: 使用的模型越来越复杂,计算量指数级上升. 期待的解决方案 解决性能瓶颈,在可见的未来不会出现新瓶颈之前的技术可以平稳过渡,如SQL: 转移成本,如软硬件成本,开发成本,技能培养成本,维护成本 2,关系型数据库和MapReduce的比较: 传统关系型数据库 MapReduce 数据大小 GB PB 访问 交互式和批处理 批处理 更新 多次读写 一次写入多次读…