强化学习基础: 注: 在强化学习中  奖励函数和状态转移函数都是未知的,之所以有已知模型的强化学习解法是指使用采样估计的方式估计出奖励函数和状态转移函数,然后将强化学习问题转换为可以使用动态规划求解的已知模型问题. 强化学习问题由于采用了MDP数学形式来构建的,由此贝尔曼方程式是我们最常用的,如下: 基础知识可参考: https://www.cnblogs.com/devilmaycry812839668/p/10306175.html =============================…
Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 ​ 强化学习算法在被引入深度神经网络后,对大量样本的需求更加明显.如果智能体在与环境的交互过程中没有获得奖励,那么该样本在基于值函数和基于策略梯度的损失中的贡献会很小. ​ 针对解决稀疏奖励问题的研究主要包括:1 Reward Shaping:奖励设计与学习 经验回放机制 探索与利用 多目标学习和辅助任务 1. Reward Shaping 人为设计的 "密…
背景就不介绍了,REINFORCE算法和AC算法是强化学习中基于策略这类的基础算法,这两个算法的算法描述(伪代码)参见Sutton的reinforcement introduction(2nd). AC算法可以看做是在REINFORCE算法基础上扩展的,所以这里我们主要讨论REINFORCE算法中算法描述和实际代码设计中的一些区别,当然这也适用于AC算法: 1.  时序折扣项为什么在实际代码中不加入  REINFORCE算法中是需要对状态动作对出现在episode内的顺序进行折扣加权的,即 γt…
2020 OpenAI 全面拥抱PyTorch,  全新版强化学习教程已发布. 全网第一个中文译本新鲜出炉:http://studyai.com/course/detail/ba8e572a 个人认为这个文档非常有条理,对新手十分十分十分友好,对老手也是一个梳理体系的好机会!…
一.Play it again: reactivation of waking experience and memory(Trends in Neurosciences 2010) SWR发放模式不仅反映了环境,而且反映了行为,这进一步表明来自以下事实:在以后的睡眠中,访问频率较高的地方会更强烈地重新激活.结果表明,在随后的睡眠过程中,编码特定位置的细胞的发放同步性随着在先前探索期间在该位置花费的时间而增加.因此,重新激活的模式偏向访问量最大的地方. 总之,这些发现表明,与探索有关的发放模式在…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…
[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 数学符号说明 蒙特卡洛方法简话 蒙特卡洛是一个赌城的名字.冯·诺依曼给这方法起了这个名字,增加其神秘性. 蒙特卡洛方法是一个计算方法,被广泛…
1 概述 在该系列上一篇中介绍的基于价值的深度强化学习方法有它自身的缺点,主要有以下三点: 1)基于价值的强化学习无法很好的处理连续空间的动作问题,或者时高维度的离散动作空间,因为通过价值更新策略时是需要对每个动作下的价值函数的大小进行比较的,因此在高维或连续的动作空间下是很难处理的. 2)在基于价值的强化学习中我们用特征来描述状态空间中的某一状态时,有可能因为个体观测的限制或者建模的局限,导致真实环境下本来不同的两个状态却再我们建模后拥有相同的特征描述,进而很有可能导致我们的value Bas…