padans 常用的统计方法】的更多相关文章

pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 describe 针对Series或DataFrame列计算统计 min/max/sum 计算最小值 最大值 总和 argmin argmax 计算能够获取到最小值和最大值的索引位置(整数) idxmin idxmax 计算能够获取到最小值和最大值的索引值 quantile 计算样本的分位数(0到1)…
统计方法 pandas 对象有一些统计方法.它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series. 比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…
# -*- coding: utf-8 -*-"""主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新.Created on Fri Aug 24 19:57:53 2018 @author: Dev""" import numpy as np import random   # 常用函数 arr = np.arange(10) print(np.sqrt(arr))    # 求平方根 print(np.exp(arr))  …
原文  http://dataunion.org/14072.html 主题 特征选择 scikit-learn 作者: Edwin Jarvis 特征选择(排序)对于数据科学家.机器学习从业者来说非常重要.好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点.底层结构,这对进一步改善模型.算法都有着重要作用. 特征选择主要有两个功能: 减少特征数量.降维,使模型泛化能力更强,减少过拟合 增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的.通常情况下,我…
特征选择(排序)对于数据科学家.机器学习从业者来说非常重要.好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点.底层结构,这对进一步改善模型.算法都有着重要作用. 特征选择主要有两个功能: 减少特征数量.降维,使模型泛化能力更强,减少过拟合 增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的.通常情况下,我们经常不管三七二十一,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的). 在许多机器学习相关的书里,很难…
python字符串常用内置方法 定义: 字符串是一个有序的字符的集合,用与存储和表示基本的文本信息. python中引号中间包含的就是字符串. # s1='hello world' # s2="hello world" # s3="""hello world""" # s3='''hello world''' 补充: 字符串的单引号和双引号都无法取消特殊字符的含义,如果想让引号内所有字符均取消特殊意义,在引号前面加r,如nam…
python列表常用内建方法: abc = ['a',1,3,'a'] #abc.pop(1) #删除索引1的值.结果['a', 3] #abc.append([123]) #结果:['a', 1, 3, [123]] #abc.extend([1234,456]) #在列表未尾一次性增加另一个列表内所有值 结果:['a', 1, 3, 1234, 456] #print(abc.count('a')) #统计该值在列表中存在相同的个数 结果:2 #abc.remove('a') #从侧开始查找…
#### [转载]原文地址:http://dataunion.org/14072.html 特征选择(排序)对于数据科学家.机器学习从业者来说非常重要.好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点.底层结构,这对进一步改善模型.算法都有着重要作用. 特征选择主要有两个功能: 减少特征数量.降维,使模型泛化能力更强,减少过拟合 增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的.通常情况下,我们经常不管三七二十一,选择一种自己最熟悉或者最方便的特征…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在日常开展数据分析的过程中,我们经常需要对字符串类型数据进行处理,此类过程往往都比较繁琐,而pandas作为表格数据分析利器,其内置的基于Series.str访问器的诸多针对字符串进行处理的方法,以及一些top-level级的内置函数,则可以帮助我们大大提升字符串型数据处理的效率. 本文我就将带大家学习pandas中常用的一些高效字符串处理…
Node.js是常用的Javascript运行环境,本文和大家发分享的主要是Node.js中process 模块的常用属性和方法,希望通过本文的分享,对大家学习Node.js http://www.maiziedu.com/course/694/有所帮助. 如果不是和命令行工具打交道,可能我们很少有机会去用到process模块中的一些方法或者属性.不过如果你要做类似于webpack或者gulp等较为复杂的构建工具,由于bash界面就是和用户直接交流的工具,因此友好的输入输出,完整的提示都非常有必…