NLP论文解读 |杨健 论文标题: ERNIE:Enhanced Language Representation with Informative Entities 收录会议:ACL 论文链接: https://arxiv.org/abs/1905.07129 项目地址: https://github.com/thunlp/ERNIE 1.问题 论文作者认为尽管预训练语言模型能够从大规模文本语料中学习到词法.语法等信息,然而这些预训练模型却忽略了知识图谱提供的知识. 这些知识能够为预训练模型提供…
特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障 0.前言 本项目主要围绕着特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障讲解了文本匹配算法的综述,从经典的传统模型到孪生神经网络"双塔模型"…
原创作者 | 杨健 论文标题: KEPLER: A unified model for knowledge embedding and pre-trained language representation 收录期刊: TACL 论文链接: https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/ 项目地址: https://github.com/THU-KEG/KEPLE 01.问题 上一次我们介绍了ERNIE,其实…
PKGC:预训练模型是否有利于KGC?可靠的评估和合理的方法 论文地址:Do Pre-trained Models Benefit Knowledge Graph Completion? A Reliable Evaluation and a Reasonable Approach 目录 PKGC:预训练模型是否有利于KGC?可靠的评估和合理的方法 摘要 1.引言 2.相关工作 2.1 评估KGC 2.2 KGC模型 2.2.1 基于嵌入的KGC模型 2.2.2 基于PLM的KGC模型 2.2.…
由“源代码”到“可执行文件”的过程包括四个步骤:预编译.编译.汇编.链接.所以,首先就应该清楚的首要问题就是:预编译只是对程序的文本起作用,换句话说就是,预编译阶段仅仅对源代码的单词进行变换,而不是对程序中的变量.函数等. 预编译指令的基本知识不作详细介绍,只稍作汇总,重点是后面的我能想到的 使用时的注意事项. 1. 基本内容 预编译指令基本分类如下 类别 指令 预定义符号__FILE__.__LINE__.__DATE__.__TIME__.__STDC__宏#define文件包含#inclu…
更新说明 本次版本重点增加了脚本组件,并且实现了类似于unity的AssetBundle,支持动态加载场景和资源. 相关链接 官网 Wonder官方QQ群: 106047770 相关资料 Wonder v1.1版本 新特性 视频演示 Wonder v1.1版本 视频演示相关的 测试资源 新特性 增加了Inspector Canvas,可以预览Material和WDB资产 增加了脚本组件(实验性功能,请暂不使用),可加入用户逻辑 增加了AssetBundle,以及生成AssetBundle的整个流…
C预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤.简言之,C预处理器只不过是一个文本替换工具而已,它们会指示编译器在实际编译之前完成所需的预处理. 所有的预处理器命令都是以井号(#)开头.它必须是第一个非空字符,为了增强可读性,预处理器指令应从第一列开始. (1) 预处理器实例 // 包含一个源代码文件(从系统库中获取 stdio.h,并添加文本到当前的源文件中) #include <stdio.h> // 定义宏(把代码中所有的FILE_SIZE替换为20) #define…
提速1000倍,预测延迟少于1ms,百度飞桨发布基于ERNIE的语义理解开发套件 11月5日,在『WAVE Summit+』2019 深度学习开发者秋季峰会上,百度对外发布基于 ERNIE 的语义理解开发套件,旨在为企业级开发者提供更领先.高效.易用的 ERNIE 应用服务,全面释放 ERNIE 的工业化价值,其中包含 ERNIE 轻量级解决方案,提速 1000倍! 今年 7 月,百度发布持续学习语义理解框架 ERNIE 2.0,在共计 16 个中英文任务上超越BERT.XLNET,取得了 SO…
原创作者 | 疯狂的Max 论文CoLAKE: Contextualized Language and Knowledge Embedding 解读 01 背景与动机 随着预训练模型在NLP领域各大任务大放异彩,一系列研究都致力于将外部知识融入大规模预训练模型,比如ERNIE[1]和KnowBERT[2],然而这些模型的局限性可以总结为以下三个方面: (1)entity embedding都是通过一些knowledge embedding(KE) models,比如用TransE[3],预先提前…
预训练模型--开创NLP新纪元 论文地址 BERT相关论文列表 清华整理-预训练语言模型 awesome-bert-nlp BERT Lang Street huggingface models 论文贡献 对如今自然语言处理研究中常用的预训练模型进行了全面的概述,包括背景知识.模型架构.预训练任务.预训练模型的各种扩展.预训练模型的适应方法.预训练模型相关资源和应用. 基于现有的对预训练模型分类方法,从四个不同的角度提出了一个新的分类方法,它从四个不同的角度对现有的原型系统进行分类: 表示类型…