前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结果易懂. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growth算法 FP-growth算法的性能很好,只需要扫描两次数据集,就能生成频繁项集.但不能用于发现关联规则. 我想应该可以使用Apriori算法发现关联规则. FP代表频繁模式(Frequent Pattern). 条件模式基(conditional pattern base). 条件模式基是以所查找元素项为结…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
iPhone开发一些读书笔记 手机应用分类1.教育工具2.生活工具3.社交应用4.定位工具5.游戏6.报纸和杂志的阅读器7.移动办公应用8.财经工具9.手机购物应用10.风景区相关应用11.旅游相关的应用12.导航工具13.企业应用 Delegation模式——delegation(委托)模式就是使用回调机制 NSData.NSMutableData——存放二进制数据的数据类型 对于画图,你首先需要重载drawRect方法.UIKit提供了如下方法:UIRectFill(CGRect rect)…
Spring实战读书笔记 Spring-core Spring之旅 - DI 和 AOP 概念 spring 的Bean容器 spring 的 核心模块 Spring的核心策略 POJO 最小侵入式编程 Spring不会强迫你实现接口或者继承类,通过DI来装配POJO类型. 采用依赖注入和面向接口实现松耦合 依赖反转容器(IOC):将整体设计和局部实现之间的依赖关系反转,比如汽车厂设计汽车:如果先设计轮子,再根据轮子设计底盘,再根据底盘设计汽车,在我们更换轮子的时候就会由于轮子和底盘之间依赖关系…
<<Java RESTful Web Service实战>> 读书笔记 第一章   JAX-RS2.0入门 REST (Representational State ransfer) 表述性状态转移 REST 具有跨平台跨语言的优势 RPC请求都是HTTP协议的POST方法,使用SOAP协议和HTTP协议 RPC 是面向方法的调用 REST 是面向资源状态的 架构风格  RPC.REST.MVC JAX-RS .JAX-WS Jersey 第二章JAX-RS2.0快速实现 J2SE…
前言:工作之后一直在搞android,现在需要更多和后台的人员交涉,技术栈不一样,难免鸡同鸭讲,所以稍稍学习下. 这个例子取自于<Spring 3.x 企业应用开发实战>一书中的第二章,IDE是Intellij,数据库为mySql.在Spring Web中,一般把系统划分为3个部分: 1.持久层----数据库的操作 2.业务层----主要的业务逻辑判断 3.展现层----展示给用户的操作界面 这是一种大而化之的分类方式,比如展现层可能是html,也可能是移动端的App.持久层可能操作的数据库也…
软件测试基础 软件的复杂度已经超越了人的理解能力 1. 虽然高抽象的层次语言,程序框架,程序库等提高了人的生产力,但是还是需要开发者深入理解细节,可以减少开发时间,但是无法减少开发者学习整个技术栈的时间 2. 对于复杂的软件,如果测试人员不能掌握全部的信息,那么他的测试策略已经会错误(对于开发也是如此),所以需要和各个工作岗位的人进行协作 3. 软件复杂,所以测试用例需要进行迭代,持续地评估和反思 4. 大规模的软件中,对于少量代码的变更都不能掉以轻心 5. 单凭人的脑力已经很难应对复杂的软件测…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度的数据集. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结…