有了上次的八皇后的基础.这次准备解决2n皇后的问题,: //问题描述// 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行.//同一列或同一条对角线上,任意的两个白皇后都不在同一行.同一列或同一条对角线上.问总共有多少种放法?n小于等于8.//输入格式// 输入的第一行为一个整数n,表示棋盘的大小.// 接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇…
给定一个 n*nn∗n 的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入 nn 个黑皇后和 nn个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条斜线(包括正负斜线)上,任意的两个白皇后都不在同一行.同一列或同一条斜线(包括正负斜线)上.问总共有多少种放法?nn 小于等于 88. 输入格式 输入的第一行为一个整数 nn,表示棋盘的大小. 接下来 nn 行,每行 nn 个 00 或 11 的整数,如果一个整数为11,表示对应的位置可以放皇后,如果一个整数为 00,表示对应的位置不可以放…
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度斜线上都不能出现皇后的棋子,例子 要求编程求出符合要求的情况的个数.四皇后问题有很多种解法,这里主要介绍一种经典的解决方法:回溯法 回溯法的基本思想是:可以构建出一棵解空间树,通过探索这棵解空间树,可以得到四皇后问题的一种或几种解.这样的解空间树有四棵 在如上图所示的4×4的棋盘上,按列来摆放棋子,…
多种解法解决n皇后问题 0x1 目的 ​ 深入掌握栈应用的算法和设计 0x2 内容 ​ 编写一个程序exp3-8.cpp求解n皇后问题. 0x3 问题描述 即在n×n的方格棋盘上,放置n个皇后,要求每个皇后不同行.不同列.不同左右对角线. 要求:(1)皇后的个数n由用户输入,其值不能超过20,输出所有的解.(2)采用类似于栈求解迷宫问题的方法. 0x4 递归解法 #include <iostream> #include <cstdio> #include <cstdlib&g…
所谓回溯(backtracking)是通过系统地搜索求解问题的方法.这种方法适用于类似于八皇后这样的问题:求得问题的一个解比较困难,但是检查一个棋局是否构成解很容易. 不多说,放上n皇后的回溯问题代码: //Queens.h #define Queens_H #ifndef Queeens_H #include <vector> using namespace std; class Queens { public: Queens(int size); //构造规模为n行n列的空棋盘 bool…
javacpp-ffmpeg系列: javacpp-FFmpeg系列之1:视频拉流解码成YUVJ420P,并保存为jpg图片 javacpp-FFmpeg系列之2:通用拉流解码器,支持视频拉流解码并转换为YUV.BGR24或RGB24等图像像素数据 javacpp-FFmpeg系列之3: 图像数据转换(BGR与BufferdImage互转,RGB与BufferdImage互转) 补充: javacpp-FFmpeg系列补充:FFmpeg解决avformat_find_stream_info检索时…
Description 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. 对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数.已经知道8皇后问题一共有92组解(即92个不同的皇后串).给出一个数b,要求输出第b个串.串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小. Input…
在前两篇,我们把所有的示例重头到尾整理了一遍. 当前的状态如下: 要做的事情: (完成) 备份:导出文件,并取一个合理的名字. 遗留问题: (完成) 第八个示例与之前的示例代码重复,功能重复. (完成) 方法所在类的命名有问题. 菜单栏显示顺序问题. 弃用的代码警告 约定和规则: 每个示例在 QFramework 目录下创建一个文件夹,文件夹的格式是: 数字.示例的功能 每个示例写一个脚本,脚本中包含可复用的静态方法和 MenuItem 方法. 每写一个示例进行一次导出,导出的文件名后边加上日期…
pycharm 不显示代码提示 1.检查IDE省电模式是否关闭状态!!! file → power save mode 取消掉 2.检查代码提示是否成功开启. setting → Inspections → Spelling 要开启 setting → Inspections → Python 要打开 3.使用快捷键:ctrl+j.ctrl+space.alt+/ 其他(不能安装): 1.检查是否Python2,3冲突. 如果冲突了,只要更改PATH变量位置就好:或者指定python2 还是 p…
在学习2n皇后之前,我们应该认识一下n皇后问题: 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对于给定的N,求出有多少种合法的放置方法.输入样例:1850输出样例:19210 可以这么理解,以4皇后为例子: 现在剩下的问题是通过一些必要的操作使得这个算法的运算效率变高,这就是剪枝: 可以这样认为,设起始第一行第一列放皇后并设其坐标是(0,0),设放皇后的坐标为(i,j),为了避免重复,新皇后的坐…