LA 7056 Colorful Toy Polya定理】的更多相关文章

题意: 平面上给出一个\(N\)个点\(M\)条边的无向图,要用\(C\)种颜色去给每个顶点染色. 如果一种染色方案可以旋转得到另一种染色方案,那么说明这两种染色方案是等价的. 求所有染色方案数 \(mod \: 10^9+7\) 分析: 这种等价类计数的问题可以用Polya定理来解决. 首先这个图形要想能旋转,本身必须中心对称,即旋转以后的顶点和边要和原图完全重合,一一对应. 事实上,旋转的角度只能是\(90^{\circ}\)的整数倍. 因为给出来的点都是整点,求出来的对称中心的坐标也都是有…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不能旋转重复就称之为本质不同) 输入样例:4 输出样例:6 那么要怎么办呢?暴力显然暴不出来…… 我们可以考虑使用置换群. 我们有两种算法: ①Burnside引理: 答案直接为1/|G|*(D(a1)+D(a2)+D(a3)+……+D(as)) 其中D(ak)为在进行置换群置换操作ak下不变的元素的…
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷砖的正.反两面都必须漆成同样的颜色. 有一天小可可突发奇想,觉得有必要试试看这些瓷砖究竟能够漆成多少种本质不同的图案.所谓两种图案本质不同就是其中的一种图案无论如何旋转.或者翻转.或者同时旋转和翻转都不能得到另外一种图案. 旋转是将瓷砖三角形整体顺时针旋转120度或240度. 翻转是将瓷砖三角形整体…
Invoker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Others)Total Submission(s): 907    Accepted Submission(s): 364 Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael can contr…
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置换群就是元素为置换的群. 再看 Polya入门  涨涨姿势. Burnside定理,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数. Polya定理:设 是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为:…
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <stdio.h> #include <iostream> #include <string.h> #include <math.h> #include <algorithm> using namespace std; int gcd(int a,int b) {…
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: (1)设G是p个对象的一个置换群,用k种颜色突然这p个对象,若一种染色方案在群G的作用下变为另一种方案,则这 两个方案当作是同一种方案,这样的不同染色方案数为: : (2)置换及循环节数的计算方法:对于有n个位置的手镯,有n种旋转置换和n种翻转置换.对于旋转置换: c(fi) = gcd(n,i) …
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However,…
polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个数是n/2+1 当项链珠子数是偶数个时,当翻转线穿过珠子时,循环节个数为n/2+1,否则为n/2; 1.poj 1286: 题目大意:用三种颜色对珠子数不超过24的项链染色,问有多少种染色情况. 这道题是最基本的polya定理考察,只要带入公式即可 #include<iostream> #incl…