Sense2vec with spaCy and Gensim】的更多相关文章

如果你在2015年做过文本分析项目,那么你大概率用的是word2vec模型.Sense2vec是基于word2vec的一个新模型,你可以利用它来获取更详细的.与上下文相关的词向量.本文主要介绍该模型的思想以及一些简单的实现. 多义性:word2vec遇到的问题 当人们编写字典和辞典时,我们会列出每个词语的不同含义.在自然语言处理过程中,利用文档的统计信息来定义词典的概念往往非常有效,其中word2vec系列模型是最常见的用于创建词典的模型.给定一个大规模的文本数据,word2vec模型将创建一个…
概述 了解如何在Python中删除停用词与文本标准化,这些是自然语言处理的基本技术 探索不同的方法来删除停用词,以及讨论文本标准化技术,如词干化(stemming)和词形还原(lemmatization) 在Python中使用NLTK,spaCy和Gensim库进行去除停用词和文本标准化 介绍 多样化的自然语言处理(NLP)是真的很棒,我们以前从未想象过的事情现在只是几行代码就可做到.这真的令人开心. 但使用文本数据会带来一系列挑战.机器在处理原始文本方面有着较大的困难.在使用NLP技术处理文本…
Gensim库简介 机器学习算法需要使用向量化后的数据进行预测,对于文本数据来说,因为算法执行的是关于矩形的数学运算,这意味着我们必须将字符串转换为向量.从数学的角度看,向量是具有大小和方向的几何对象,不需过多地关注概念,只需将向量化看作一种将单词映射到数学空间的方法,同时保留其本身蕴含的信息. Gensim是世界上最大的NLP/信息检索Python库之一,兼具内存高效性和可扩展性.Gensim的可扩展性体现为它采用了Python内置的生成器和迭代器进行流式数据处理,所以数据集事实上并未完全加载…
R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运行效率? 2.如何提高词向量的精度,或者说如何衡量词向量优劣程度? 3.词向量的功能性作用还有哪些值得开发? 4.关于语义中的歧义问题如何消除? 5.词向量从"词"往"短语"的跨越? 转载请注明出处以及作者(Matt),欢迎喜欢自然语言处理一起讨论~ ---------…
python核心库和统计 简述 1. Requests.最着名的http库由kenneth reitz编写.这是每个python开发人员必备的. 2. Scrapy.如果您参与webscraping,那么这是一个必备的库.使用此库后,您将不会使用任何其他库. 3. wxPython.python的gui工具包.我主要使用它代替tkinter.你真的很喜欢它. 4. Pillow..PIL(Python Imaging Library)的友好分支.它比PIL更加用户友好,对于使用图像的人来说是必须…
核心库与统计 1. NumPy(提交:17911,贡献者:641) 一般我们会将科学领域的库作为清单打头,NumPy 是该领域的主要软件库之一.它旨在处理大型的多维数组和矩阵,并提供了很多高级的数学函数和方法,因此可以用它来执行各种操作. 在过去一年,开发团队对该库进行了大量改进.除了错误修复和解决兼容性问题之外,关键的变更还包括样式改进,即 NumPy 对象的打印格式.此外,一些函数现在可以处理任意编码的文件,只要这些编码受 Python 支持. 2. SciPy(提交:19150,贡献者:6…
Generally, NLTK is used primarily for general NLP tasks (tokenization, POS tagging, parsing, etc.) Sklearn is used primarily for machine learning (classification, clustering, etc.) Gensim is used primarily for topic modeling and document similarity.…
欢迎交流,转载请注明出处. 本文介绍gensim工具包中,带标签(一个或者多个)的文档的doc2vec 的向量表示. 应用场景: 当每个文档不仅可以由文本信息表示,还有别的其他标签信息时,比如,在商品推荐中,将每个商品看成是一个文档,我们想学习商品向量表示时,可以只使用商品的描述信息来学习商品的向量表示,但有时:商品类别等信息我们也想将其考虑进去, 最简单的方法是:当用文本信息学习到商品向量后,添加一维商品的类别信息,但只用一维来表示商品类别信息的有效性差.gensim 工具包的doc2vec提…
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.zh.seg.utf.txt,去停止词后可进行LDA实验. import codecs from gensim.models import LdaModel from gensim.corpora import Dictionary train = [] stopwords = codecs.open…
gensim 是处理文本的很强大的工具包,基于python环境下: 1.gensim可以做什么? 它可以完成的任务,参加gensim 主页API中给出的介绍,链接如下: http://radimrehurek.com/gensim/apiref.html 2.word2vec的使用 其中学习词向量的方法可利用,word2vec,具体使用我爱自然语言中介绍的很清楚,如下链接: http://ju.outofmemory.cn/entry/80023 3.doc2vec/paragraph2vec的…
本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其实是2013年Mikolov开源的一款用于计算词向量的工具.关于Word2vec更多的原理性的介绍,可以参见我的另一篇博客:word2vec前世今生 在Gensim中实现word2vec模型非常简单.首先,我们需要将原始的训练语料转化成一个sentence的迭代器:每一次迭代返回的sentence是…
利用gensim 直接生成文档向量 def gen_d2v_corpus(self, lines): with open("./data/ques2_result.txt", "wb") as fw: for line in lines: fw.write(" ".join(jieba.lcut(line)) + "\n") sents = doc2vec.TaggedLineDocument("./data/que…
上一期讨论了Tensorflow以及Gensim的Word2Vec模型的建设以及对比.这一期,我们来看一看Mikolov的另一个模型,即Paragraph Vector模型.目前,Mikolov以及Bengio的最新论文Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews里就引入了该模型作为用户对影视作品的评论分析方法.与此同时,网络上很多地方也指出该模型效果并没有…
接昨天的博客,这篇随笔将会对本人运行Word2Vec算法时在Gensim以及Tensorflow的不同版本下的运行结果对比.在运行中,参数的调节以及迭代的决定本人并没有很好的经验,所以希望在展出运行的参数以及结果的同时大家可以批评指正,多谢大家的支持! 对比背景: 对比实验所运用的corpus全部都是可免费下载的text8.txt.下载点这里.在训练时,word embedding的维度被调节为200,除了word2vec_basic.py版本的step size为600001外,其余均为15个…
安装了一天的gensim,其中因为版本不一致等等各种问题纠结了好久,现记录如下: 正确安装方式: 1. 安装python2.7 2. 下载Python Extension Packages对应版本的numpy.scipy.gensim 3. 进入python安装目录下的Scripts目录     执行: pip install numpy***.whl                pip install scipy***.whl                pip install gensi…
在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从实践的角度,使用gensim来学习word2vec. 1. gensim安装与概述 gensim是一个很好用的Python NLP的包,不光可以用于使用word2vec,还有很多其他的API可以用.它封装了google的C语言版的word2vec.当然我们可以可以直接使用C语言版的word2vec来…
spaCy is a library for advanced natural language processing in Python and Cython. spaCy is built on the very latest research, but it isn't researchware. It was designed from day one to be used in real products. spaCy currently supports English, Germa…
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现了word2vec功能,以便进行进一步的处理. 具体API看官网:https://radimrehurek.com/gensim 中文分词 中文需要分词,英文就不需要了,分词用的 jieba . def segment(d…
今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一些特殊名词,我从网上搜了一些,作为字典,加入到jieba里,以提高分词的准确性. 一.gensim中关于word2vec的参数说明 这一部分其他博客整理的比较清楚了,我也就不抄过来了.看这个链接: https://www.cnblogs.com/pinard/p/7278324.html 二.gensim训练…
在window下使用gemsim.models.word2vec.LineSentence加载中文维基百科语料库(已分词)时报如下错误: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xca in position 0: invalid continuation byte 这种编码问题真的很让人头疼,这种问题都是出现在xxx.decode("utf-8")的时候,所以接下来我们来看看gensim中的源码: class Line…
一 . pypinyin from pypinyin import lazy_pinyin, TONE, TONE2, TONE3 word = '孙悟空' print(lazy_pinyin(word, style=TONE)) # ['sūn', 'wù', 'kōng'] print(lazy_pinyin(word, style=TONE2)) # ['su1n', 'wu4', 'ko1ng'] print(''.join(lazy_pinyin(word, style=TONE2))…
gensim的LDA算法中很容易提取到每篇文章的主题分布矩阵,但是一般地还需要进一步获取每篇文章归属到哪个主题概率最大的数据,这个在检索gensim文档和网络有关文章后,发现竟然没有. 简单写了一下. #打印每篇文档最高概率主题 for i in lda.get_document_topics(corpus)[:]: listj=[] for j in i: listj.append(j[1]) bz=listj.index(max(listj)) #print(i[bz][0],i,listj…
参考代码 ChineseClean_demo1.py: # -*- coding:utf-8 -*- import xlrd import xlwt ''' python3.4 ''' # file 表示源文件名字,修改此处即可 file="./data/answer_detail_5_15307860968687.xls" dirs="./result" def read_excel(rows_numb,cols_numb): f = xlwt.Workbook(…
参考链接:https://blog.csdn.net/whzhcahzxh/article/details/17528261 demo1:结巴分词: # 构造分词库,格式如下: ''' [['楼下', '买', '水果', '这家', '店', '价格比', '店要', '高', '', '', '%', '价格', '太高', '老板', '说', '老板', '您好', '家', '水果', '很漂亮', '新鲜', '进货', '价格', '挺', '高', '我刚', '搬', '喜欢'…
依赖软件包:numpy 直接使用pip安装: [root@mycentos ~]#pip install gensim 安装gensim的时候会遇到下面的一系列错误: Cannot uninstall 'numpy'. It is a distutils installed project and thus we cannot accurate 意思是: 安装gensim的时候需要numpy更高的版本,而自带的numpy版本较低,版本有问题但是numpy已经安装过了,无法进行直接卸载.解决办法:…
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达.它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口. 1.实现类 class gensim.models.Word2Vec(sentences=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=…
关于word2vec的原理知识参考文章https://www.cnblogs.com/Micang/p/10235783.html 语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据 数据处理参考这篇文章 模型训练: # -*- coding: utf-8-*- from gensim.models.word2vec import Word2Vec sentences = [['A1','A2'],['A1','A3','A2']] num=0 wit…
word2vec的基础知识介绍参考上一篇博客和列举的参考资料. 首先利用安装gensim模块,相关依赖如下,注意版本要一致: Python >= 2.7 (tested with versions 2.7, 3.5 and 3.6)    NumPy >= 1.11.3    SciPy >= 0.18.1    Six >= 1.5.0    smart_open >= 1.2.1 我们利用jieba分词对<射雕英雄传>进行分词,然后训练词向量,最后进行测试 #…
问题: UserWarning: detected Windows; aliasing chunkize to chunkize_serial warnings.warn("detected Windows; aliasing chunkize to chunkize_serial") 解决方案: 在import gensim前面加入: import warnings warnings.filterwarnings(action='ignore', category=UserWarni…
原文:http://mp.weixin.qq.com/s/sqa-Ca2oXhvcPHJKg9PuVg import spacy nlp = spacy.load("en_core_web_sm") doc = nlp("The big grey dog ate all of the chocalate,but fortunately he wasn't sick!") # 利用空格分开 print(doc.text.split()) # 利用token的.orth…