CNN中下一层Feature map大小计算】的更多相关文章

符号表示: $W$:表示当前层Feature map的大小. $K$:表示kernel的大小. $S$:表示Stride的大小. 具体来讲: 整体说来,和下一层Feature map大小最为密切的就是Stride了,因为按照CNN的移动方式,是根据Stride来进行移动的,因此除了最后一个的长度为K之外,前面所有的长度全部为S.当然K=S仅仅是一种特殊情况而已. 正如这幅图片所示(有点丑,将就着看吧),为了直观,故意将重叠的部分给忽略掉,这样可以更清楚的明白到底是怎样一回事. 因此最后的公式就是…
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中:…
对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height )+1 out_width=((input_width - filter_width + padding_left+padding_right)/stride_width )+1 在以下情况下: 1.四边的padding大小相等.padding_top=padding_bottom=padding_l…
个人学习CNN的一些笔记,比较基础,整合了其他博客的内容 feature map的理解在cnn的每个卷积层,数据都是以三维形式存在的.你可以把它看成许多个二维图片叠在一起(像豆腐皮竖直的贴成豆腐块一样),其中每一个称为一个feature map. feature map 是怎么生成的?输入层:在输入层,如果是灰度图片,那就只有一个feature map:如果是彩色图片(RGB),一般就是3个feature map(红绿蓝) [ 下图中三大部分依次是输入RGB图片,卷积核(也称过滤器),卷积结果(…
(1)边长的计算公式是:  output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1 输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为: (200-5+2*1)/2+1 为9…
在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600,800),在经过一系列的卷积以及pooling操作之后在某一个层中得到的feature map大小是(38,50),那么在原图中roi是(30,40,200,400),在feature map中对应的roi区域应该是roi_start_w = round(30 * spatial_scale);r…
capsule network--<Dynamic Routing Between Capsules> from:https://zhuanlan.zhihu.com/p/31491520   Hinton大神前一段时间推出的capsule network--<Dynamic Routing Between Capsules>可谓是火了朋友圈,吸引了无数科研人员的眼球.现实生活中,无论你持什么样的观点,总有人站在“对立面”,比如知乎中不乏“高人”跳出来“怒喷”这篇论文.那些怒喷的回…
CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者写的很好,解决了很多基础问题. feather map理解 这个是输入经过卷积操作后输出的结果,一般都是二维的多张图片,在论文图上都是以是多张二维图片排列在一起的(像个豆腐皮一样),它们其中的每一个都被称为\(feature \quad map\) feather map…
在CNN(1)中,我们用到下图来说明卷积之后feature maps尺寸和深度的变化.这一节中,我们讨论feature map size, padding and stride. 首先,在Layer1中,输入是32x32的图片,而卷积之后为28x28,试问filter的size(no padding)? (答案是5x5). 如果没答上来,请看下图: I是一张7x7的图片,filter是3x3的,I*K生成的feature map是5x5的.所以我们推出feature map size公式为: 其…
Irradiance Environment Map基本原理 Irradiance Environment Map(也叫Irradiance Map或Diffuse Environment Map),属于Image Based Lighting技术中的一种. Irradiance Map的详细定义可参考GPU Gems2  Chapter 10.“Real-Time Computation of Dynamic Irradiance Environment Maps”.简单说来就是一种用于近似E…