/* * 输入:采样率,待采样的RDD * 输出:每个分区的样本大小(记录数) * 由采样率确定,每个分区的样本大小 */ def findNumPerPartition[T: ClassTag, U: ClassTag](sampleRate : Double, rddNum : RDD[T]): Int ={ //RDD总记录数 val numRdd=rddNum.count() //RDD的分区数 val numPartition=rddNum.partitions.size //样本总记…
  知识复习 空间亚线性算法:由于大数据算法中涉及到的数据是海量的,数据难以放入内存计算,所以一种常用的处理办法是不对全部数据进行计算,而只向内存里放入小部分数据,仅使用内存中的小部分数据,就可以得到一个有质量保证的结果. 数据流算法:是指数据源源不断地到来,根据到来的数据返回相应的部分结果.适用于两种情况:第一.数据量非常大仅能扫描一次时,可以把数据看成数据流,把扫描看成数据到来.第二.数据更新非常快,不能把所有数据都保存下来再计算结果,此时可以把数据看成是一个数据流. 在一些情况下,空间亚线…
def partitionBy(partitioner: Partitioner): RDD[(K, V)] 该函数根据partitioner函数生成新的ShuffleRDD,将原RDD重新分区. scala> var rdd1 = sc.makeRDD(Array((1,"A"),(2,"B"),(3,"C"),(4,"D")),2) rdd1: org.apache.spark.rdd.RDD[(Int, Strin…
目录 spark的分区 一. Hash分区 二. Ranger分区 三. 自定义Partitioner 案例 spark的分区 ​ Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数. 注意 (1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD,分区器的值是None (2)每个RDD的分区ID范围…
本节内容 ------------------ · Spark为什么要分区 · Spark分区原则及方法 · Spark分区案例 · 参考资料 ------------------ 一.Spark为什么要分区    分区概念:分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要分区,这个借用…
一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 二.为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变…
一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 二.为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变…
在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何做到的. 查找质数 比如我们需要从2到2000000之间寻找所有的质数.我们很自然地会想到先找到所有的非质数,剩下的所有数字就是我们要找的质数. 我们首先遍历2到2000000之间的每个数,然后找到这些数的所有小于或等于2000000的倍数,在计算的结果中可能会有许多重复的数据(比如6同时是2和3的…
一.分区原理 1.为什么要分区?(这个借用别人的一段话来阐述.) 为了减少网络传输,需要增加cpu计算负载.数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件, 从而减少网络传输,但是增加了cpu的计算负载. Spark里面io也是不可避免的,但是网络传输spark里面进行了优化.spark把rdd进行分区(分片),放在集群上并行计…
一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 二.为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变…