目录 以NASA之名: 卡尔曼滤波器 引言 荣耀骑士 卡尔曼滤波器* 参考文献: 以NASA之名: 卡尔曼滤波器 'That's one small step for man,one giant leap for mankind.' - Neil Alden Armstron 引言 二十世纪的阿波罗登月计划在人类历史上是浓墨重彩的一笔, 是人类科学发展极其重要的里程碑. 在此计划中, 阿姆斯特朗在月球上说出了上面的一句话,是对此计划最最恰当的注释. 说起来这个计划很''简单'': 送人到月球转一…
1.简单介绍(Brief Introduction) 在学习卡尔曼滤波器之前,首先看看为什么叫"卡尔曼". 跟其它著名的理论(比如傅立叶变换.泰勒级数等等)一样.卡尔曼也是一个人的名字,而跟他们不同的是.他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯. 1953,1954年于麻省理工学院分别获得电机project学士及硕士学位.1957年于哥伦比亚大学获得博士学位.我们如今要学习的卡尔曼滤波器.正是源于他的博士论文和19…
1.简介(Brief Introduction) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文<A New…
一.卡尔曼滤波器的理论解释 http://blog.csdn.net/lindazhou2005/article/details/1534234(推荐) 二.代码中一些随机数设置函数,在opencv中文网站上没有查到: cvRandInit()初始化CvRandState数据结构,可以选定随机分布的种类,并给定它种子,有两种情形cvRandInit(CvRandState数据结构,随机上界,随机下界,均匀分布参数,64bits种子的数字) cvRandInit(CvRandState数据结构,平…
在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥 伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文<A New Approach to Linear Fil…
卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接,比较详细了,如果想详细了解应该看下那篇开篇论文,已经有人翻译成了中文. http://zh.wikipedia.org/zh/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2 卡尔曼滤波器 – Kalman Filter 1.    什么是卡尔曼滤波器(Wh…
= 参考/转自: 1 ---https://blog.csdn.net/u010720661/article/details/63253509 2----http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/ 3----徐亦达  机器学习课程(优酷) 4 -----https://blog.csdn.net/u010480899/article/details/55656209 不知道为什么,之前学习卡尔曼滤波器,总感觉差了点什…
[首发:cnblogs    作者:byeyear    Email:byeyear@hotmail.com] 本文所用实例来自于以下书籍: Fundamentals of Kalman Filtering: A Practical Approach, 3rd Edition.Paul Zarchan, Howard Musoff. 某物体位于距地面400000 ft的高空,初速度为6000 ft/s,重力加速度为32.2 ft/s2.地面雷达位于其正下方测量该物体高度,测量周期0.1s,维持3…
1. 卡尔曼滤波器介绍 卡尔曼滤波器的介绍, 见 Wiki 这篇文章主要是翻译了 Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation 感谢原作者. 如果叙述有误,欢迎指正! 2. 基本模型 2.1 系统模型 卡尔曼滤波模型假设k时刻的真实状态是从(k − 1)时刻的状态演化而来,符合下式: (1) Fk 是作用在 Xk−1 上的状态变换模型(/矩阵/矢量). Bk 是作用在控制器向量…
1. 卡尔曼滤波器介绍 卡尔曼滤波器的介绍, 见 Wiki 这篇文章主要是翻译了 Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation 感谢原作者. 如果叙述有误,欢迎指正! 2. 基本模型 2.1 系统模型 卡尔曼滤波模型假设k时刻的真实状态是从(k − 1)时刻的状态演化而来,符合下式: (1) Fk 是作用在 Xk−1 上的状态变换模型(/矩阵/矢量). Bk 是作用在控制器向量…
搬砖到此: A Quick Insight     As I mentioned earlier, it's nearly impossible to grasp the full meaning of Kalman Filter by starting from definitions and complicated equations (at least for us mere mortals). For most cases, the state matrices drop out and…
http://www.tuicool.com/articles/eQ7nEn 最终到了HLS部分.HLS是High Level Synthesis的缩写,是一种能够将高级程序设计语言C,C++.SystemC综合为RTL代码的工具. 生产力的发展推动了设计模式.在电子技术0基础阶段,人们关注的是RLC电路.通过建立微分方程求解电路响应. 门级电路是对RLC的初步封装,人们进而採用布尔代数.卡诺图进行电路设计与分析.之后随着集成电路进一步发展.门电路能够集成为寄存器.触发器.ROM等宏单元.设计工…
真实的温度测试数据,通过加热棒加热一盆水测得的真实数据,X轴是时间秒,Y轴是温度: 1)滤波前 2)滤波后(p=10, q=0.0001, r=0.05, kGain=0;) 2)滤波后(p=10, q=0.00001, r=1, kGain=0;),Y轴放大10倍并取整 .   相关C语言代码: #define LINE 1024 ; , q=; float kalmanFilter(float inData) { p = p+q; kGain = p/(p+r); inData = prev…
视频资料网址:https://www.youtube.com/watch?v=mwn8xhgNpFY&list=RDCMUCgdHSFcXvkN6O3NXvif0-pA&index=4 什么时候使用卡尔曼滤波? 总结 1.所求变量不能直接测量 2.可以通过各种传感器进行测量,但可能会受到噪声的影响,即测量结果不完全可信…
Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than they. Our study of the works of the ancients enables us to give fresh life to their finer ideas, and rescue them from time’s oblivion and man’s neglect.…
原 https://blog.csdn.net/alwaystry/article/details/52756051 图像算法五:[图像小波变换]多分辨率重构.Gabor滤波器.Haar小波 2018年11月30日 01:49:25 芥末酱- 阅读数:720    版权声明:不允许转载本博客文章,否则违版必究. https://blog.csdn.net/weixin_42346564/article/details/84642513 matlab设计: 与单纯运用某种自适应算法相比,基于小波分…
预估器 我们希望能够最大限度地使用測量结果来预计移动物体的运动. 所以,多个測量的累积能够让我们检測出不受噪声影响的部分观測轨迹. 一个关键的附加要素即此移动物体运动的模型. 有了这个模型,我们不仅能够知道该移动物体在什么位置,同一时候还能够知道我们观察支持模型的什么參数. 该任务分为两个阶段.在第一阶段,即预測阶段.用从过去得到的信息进一步修正模型以取得人或物体的下一个将对出现的位置.在第二阶段,即校正阶段,我们获得一个測量.然后与基于前一次測量的预測值(即模型)进行调整.完毕两个阶段预计任务…
1 简介 由卡尔曼这个学者提出的最佳线性滤波器,单纯时域维度即可实现[无需进行频域变换] 2 思路 由上一时刻的最佳估计值XKE_P预测①当前时刻预测值Pxv 与 ②当前时刻的测量值Mxv 进行联立计算获得当 ③前时刻的最佳估计值XKE 3 核心 4 Matlab实例 4.1 题目[老师留的课堂作业] 研一的时候做过一次,当时没有总结:最近师弟们在写这个作业花时间重新弄了一遍,做了一次总结 4.2 源代码 不带BU参数 version9_release.m %% 卡尔曼滤波的发布版本程序 %%…
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报  分类: OpenCV(60)  版权声明:本文为博主原创文章,未经博主允许不得转载. 决心开始研究OpenCV.闲言少叙,sourceforge网站最近的版本是2011年8月的OpenCV2.3.1,下载安装,我这里使用的开发环境是vs2008,网上搜了一下配置的教程,与之前的几个OpenCV版本的配置过程大体相同:(…
      首页 视界智尚 算法技术 每日技术 来打我呀 注册     SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我们再就各个小问题,讲讲经典的算法与分类. 1. 前言 在<SLAM for Dummy>中,有一句话说的好:”SLAM并不是一种算法,而是一个概念.(SLAM is more like a concept than a single algorithm.)”所以,你可以和导师.师兄弟(以及师妹,如…
1. 前言 读者朋友们大家好!(很久很久)之前,我们为大家介绍了SLAM的基本概念和方法.相信大家对SLAM,应该有了基本的认识.在忙完一堆写论文.博士开题的事情之后,我准备回来继续填坑:为大家介绍SLAM研究的方方面面.如果前两篇文章算是"初识",接下来几篇就是"渐入佳境"了.在第三篇中,我们要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我们再就各个小问题,讲讲经典的算法与分类.我有耐心讲,你是否有耐心听呢? 在&l…
贝叶斯网(Bayesian networks)是一种描述随机变量之间关系的语言,构造贝叶斯网是为了概率推理,理论上概率推理基于联合概率分布就行了,但是联合概率分布(基于表)的复杂度会呈指数增长,贝叶斯网(基于图)可以弥补其中的不足,我们利用问题的结构可以把联合概率分布进行分解,从而大大降低计算复杂度. 贝叶斯网是图论与概率论相结合的产物,图论用于描述,概率论用于优化. 许多经典的多元概率模型都是贝叶斯的特例,包括朴素贝叶斯模型(naive Bayes models),隐类模型(latent cl…
内容: 调试强化学习算法(RL算法) LQR线性二次型调节(french动态规划算法) 滤波(kalman filters) 线性二次高斯控制(LGG) Kalman滤波器 卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法.由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程. 斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方…
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimensional vector:rbind(x1,x2); cbind(x1,x2) > x = c(1,2,3,4,5,6) > y = c(6,5,4,3,2,1) > z = rbind(x,y) > z [,1] [,2] [,3] [,4] [,5] [,6] x 1 2 3 4…
背景: 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态.卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度. 这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法. 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NAS…
http://blog.163.com/xiaheng0804@126/blog/static/1205282120132129471816/ 创建两个混合信号,便于更好测试滤波器效果.同时用七中滤波方法测试.混合信号Mix_Signal_1 = 信号Signal_Original_1+白噪声. 混合信号Mix_Signal_2 = 信号Signal_Original_2+白噪声. 1.巴特沃斯低通滤波器去噪巴特沃斯滤波器适合用于信号和噪声没有重叠的情况下.下图是巴特沃斯对两个信号的滤波效果.…
一.引言 以下我们引用文献[1]中的一段话作为本文的開始: 想象你在黄昏时分看着一仅仅小鸟飞行穿过浓密的丛林.你仅仅能隐隐约约.断断续续地瞥见小鸟运动的闪现.你试图努力地猜測小鸟在哪里以及下一时刻它会出如今哪里,才不至于失去它的行踪.或者再想象你是二战中的一名雷达操作员,正在跟踪一个微弱的游移目标.这个目标每隔10秒钟在屏幕上闪烁一次. 或者回到更远的从前.想象你是开普勒,正试图依据一组通过不规则和不准确的測量间隔得到的非常不精确的角度观測值来又一次构造行星的运动轨迹.在全部这些情况下.你都试图…
http://www.newsmth.NET/nForum/#!article/Python/128763 最近程序化交易很热,量化也是我很感兴趣的一块. 国内量化交易的平台有几家,我个人比较喜欢用的是JoinQuant,里面有篇干货贴分享给大家,希望对各位有帮助.       =========================== 量化交易策略 ===========================   价值投资 成长股内在价值投资:http://www.joinquant.com/post/…
1.角度和弧度之间的转换公式? 设角度为 angle,弧度为 radian radian = angle * pi / 180; angle = radian * 180 / pi; 所以在matlab中经常设置一个参数,用于角度与弧度之间的转换:deg_rad=0.01745329252e0; 2.注意下面角度Angint的表示方法: Angint=[0,10,0]*deg_rad: 则:Angint(0) = 0;Angint(1) = 0.0175;Angint(2) = 0; 这种表示方…
一.环境需求 二.怎样使用 三.本地化 3.1扩展卡尔曼滤波本地化 3.2无损卡尔曼滤波本地化 3.3粒子滤波本地化 3.4直方图滤波本地化 四.映射 4.1高斯网格映射 4.2光线投射网格映射 4.3k均值物体聚类 4.4圆形拟合物体形状识别 五.SLAM 5.1迭代最近点匹配 5.2EKF SLAM 5.3FastSLAM 1.0 5.4FastSLAM 2.0 5.5基于图的SLAM 六.路径规划 6.1动态窗口方式 6.2基于网格的搜索 迪杰斯特拉算法 A*算法 势场算法 6.3模型预测…