Building your Deep Neural Network: Step by Step 你将使用下面函数来构建一个深层神经网络来实现图像分类. 使用像relu这的非线性单元来改进你的模型 构建一个多隐藏层的神经网络(有超过一个隐藏层) 符号说明: 1 - Packages(导入的包) numpy:进行科学计算的包 matplotlib :绘图包 dnn_utils:提供一些必要功能 testCases 提供一些测试用例来评估函数的正确性 np.random.seed(1) 设置随机数种子…
Deep Neural Network for Image Classification: Application 预先实现的代码,保存在本地 dnn_app_utils_v3.py import numpy as np import matplotlib.pyplot as plt import h5py def sigmoid(Z): """ Implements the sigmoid activation in numpy Arguments: Z -- numpy…
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447967 分类: 机器学习2013-07-24 11:50 517人阅读 评论(5) 收藏 举报 目录(?)[-] DBNdbnsetupm DBNdbntrainm DBNrbmtrainm DBNdbnunfoldtonnm 总结 =================================…
Planar data classification with one hidden layer 你会学习到如何: 用单隐层实现一个二分类神经网络 使用一个非线性激励函数,如 tanh 计算交叉熵的损失值 实现前向传播和后向传播 1 - Packages(导入包) 需要导入的包: numpy:Python中的常用的科学计算库 sklearn:提供简单而高效的数据挖掘和数据分析工具 matplotlib:Python中绘图库 testCases: 提供了一些测试例子来评估函数的正确性 planar…
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture of a learning algorithm, including: Initializing parameters(初始化参数) Calculating the cost function and its gradient(计算代价函数,和他的梯度) Using an optimization…
========================================================================================== 最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep…
0 - Abstract 深度神经网络(DNNs)最近在图像分类任务上表现出了突出的性能.在这篇文章中,我们进一步深入探究使用DNNs进行目标检测的问题,这个问题不仅需要对物体进行分类,并且还需要对各种各样类别的物体进行精确定位.我们提出了简单但依然有效的将目标检测问题形式化为回归问题从而来对物体边界框进行定位.我们提出了一个多尺度推理程序(模型?),它可以通过应用少量网络层来产生高分辨率的具有小误差的目标检测.并在Pascal VOC上展示了当前最好方法的效果. 1 - Introductio…
zaish上一节讲了线性回归中L2范数的应用,这里继续logistic回归L2范数的应用. 先说一下问题:有一堆二维数据点,这些点的标记有的是1,有的是0.我们的任务就是制作一个分界面区分出来这些点.如图(标记是1的样本用+表示,0的用红点表示): 这其实是一个二分类问题,然后我们就想到了logistic回归模型.这是一个概率模型, 即预测在x已知时,标记为1的概率:那么标记为0的概率为:. 那么分别根据每个样本的标记y是1还是0分别带入到每个概率模型(每个样本只带入一个模型,而不是两个都带入)…
cost function 加一个正则项的原因是防止产生过拟合现象.正则项有L1,L2 等范数,我看过讲的最好的是这个博客上的:机器学习中的范数规则化之(一)L0.L1与L2范数.看完应该就答题明白了. 这里我们说一下线性回归中L2范数的应用.假设我们的与各维度变量(这里每一个样本只有一维x)关系的模型是:,表示是模型根据各维度变量预测的.    注意这个模型表明我们这里假设与各维度变量的关系不是线性的,如果是线性的那么就是h(X)=ax1+bx2+-,样本每一维都是一次平方,然后叠加,这里只有…
写在前面的废话: 出了托福成绩啦,本人战战兢兢考了个97!成绩好的出乎意料!喜大普奔!撒花庆祝! 傻…………寒假还要怒学一个月刷100庆祝个毛线………… 正题: 题目是CNN,但是CNN的具体原理和之后会写一篇博客在deeplearning目录下详细说明. 简单地说,CNN与NN相比独特之处在于用部分连接代替全链接,并用pooling来对数据进行降维,这样做有几个好处: 对于大图像来说所需训练的参数大大减少 获取图像的部分特征而非全局特征 pooling使得网络的输出结果具有一定的平移和遮挡不变…