python机器学习——决策树算法】的更多相关文章

决策树是一个非参数的监督式学习方法,主要用于分类和回归.算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型.如下如所示,决策树通过一系列if-then-else 决策规则 近似估计一个正弦曲线. 决策树优势: 简单易懂,原理清晰,决策树可以实现可视化 数据准备简单.其他的方法需要实现数据归一化,创建虚拟变量,删除空白变量.(注意:这个模块不支持缺失值) 使用决策树的代价是数据点的对数级别. 能够处理数值和分类数据 能够处理多路输出问题 使用白盒子模型(内部结构可以直接观测的…
分类树(决策树)是一种十分常用的分类方法.核心任务是把数据分类到可能的对应类别. 他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类. 决策树的理解 熵的概念对理解决策树很重要 决策树做判断不是百分之百正确,它只是基于不确定性做最优判断. 熵就是用来描述不确定性的. 案例:找出共享单车用户中的推荐者 解析:求出哪一类人群更可能成为共享单车的推荐者.换句话说是推荐者与其他变量之间不…
前面学习了决策树的算法原理,这里继续对代码进行深入学习,并掌握ID3的算法实践过程. ID3算法是一种贪心算法,用来构造决策树,ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每一个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美的分类训练样例. ID3算法的背景知识 ID3算法最早是由罗斯昆(J. Ross Quinlan)于1975年在悉尼大学提出的一种分类预测算法,算法的核心是“信息熵”.ID3算法通…
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,…
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的废话,毕竟英文有的时候比较啰嗦. 一.决策树算法基本原理 背景:假设你的哥哥是一个投资房地产的大佬,投资地产赚了很多钱,你的哥哥准备和你合作,因为你拥有机器学习的知识可以帮助他预测房价.你去问你的哥哥他是如何预测房价的,他告诉你说他完全是依靠直觉,但是你经过调查研究发现他预测房价是根据房价以往的表现…
前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪…
1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法.它是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类.这样的机器学习就被称之为监督学习.C4.5分类树就是决策树算法中最流行的一种.下面给出一个数据集作为算法例子的基础,比如有这么一个数据集,如下: 我们将以这个数据集作讨论的基础.进行分类的目的就是根据某一天的天气状态,如天气,温度,湿度,是否刮风,来…
前一天,我们基于sklearn科学库实现了ID3的决策树程序,本文将基于python自带库实现ID3决策树算法. 一.代码涉及基本知识 1. 为了绘图方便,引入了一个第三方treePlotter模块进行图形绘制.该模块使用方法简单,调用模块createPlot接口,传入一个树型结构对象,即可绘制出相应图像. 2.  在python中,如何定义一个树型结构对象 可以使用了python自带的字典数据类型来定义一个树型对象.例如下面代码,我们定义一个根节点和两个左右子节点: rootNode = {'…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
1. 决策树基本知识 决策树就是通过一系列规则对数据进行分类的一种算法,可以分为分类树和回归树两类,分类树处理离散变量的,回归树是处理连续变量. 样本一般都有很多个特征,有的特征对分类起很大的作用,有的特征对分类作用很小,甚至没有作用.如决定是否对一个人贷款是,这个人的信用记录.收入等就是主要的判断依据,而性别.婚姻状况等等就是次要的判断依据.决策树构建的过程,就是根据特征的决定性程度,先使用决定性程度高的特征分类,再使用决定性程度低的特征分类,这样构建出一棵倒立的树,就是我们需要的决策树模型,…