利用mongodb保存图片通常有两种方法,一种是将图片数据转化为二进制作为字典的键值对进行保存,另一种是利用mongodb提供的GridFS进行保存,两者各有利弊.性能方面的优劣未曾测试,无法进行评价,此处仅对两种方式进行介绍,若有彻知者还望指教. 下面以如下数据作为示例进行介绍: 数据示例 dic = { "owner_name" : "samssmilin", "photo_id" : "602880671", "…
pandas要处理的数据是一个数据表格.代码: 1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt 4 5 e_file = pd.ExcelFile('7月下旬入库表.xlsx') 6 data = e_file.parse('7月下旬入库表') 7 8 #print(data) 9 10 #pt1 = pd.pivot_table(data, index=['销售商'], columns=[…
一. 二分法的适用条件 二分法查找适用于数据量较大时, 但是数据需要先排好顺序. 优点: 二分法查找效率特别高 缺点: 二分法只适用于有序序列 二. 二分法的主要思想是:设查找的数组区间为array[low, high](1)确定该区间的中间位置k(2)将查找的值T与array[k]比较. 若相等, 查找成功返回此位置, 否则确定新的查找区域, 继续二分查找. 区域确定如下: 1) T < array[k] 由数组的有序性可知T < array[k,k+1,……,high], 故新的区间为ar…
Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理E…
数据测试001:利用python连接数据库插入excel数据 最近在做数据测试,主要是做报表系统,需要往数据库插入数据验证服务逻辑,本次介绍如何利用python脚本插入Oracle和Mysql库中: 1)Oracle部分 #coding=utf-8import osos.environ['NLS_LANG'] = 'SIMPLIFIED CHINESE_CHINA.UTF8' #这个很重要,不写会报错import cx_Oracleimport pandas as pd#连接oracle数据库c…
在之前的文章中,我们获得了豆瓣爬取的短评内容,汇总到了一个文件中,但是,没有被利用起来的数据是没有意义的. 前文提到,有一篇微信推文的关于词云制作的一个实践记录,准备照此试验一下. 思路分析 读文件 利用with open() as...将文件读进来.这里需要注意文件内容的大小. 分词 由于获取的是大量的短评文字,而制作词云需要的是各种词语,有了词,才能谈词云,所以目前第一步需求的就是讲短评内容拆分成一个个的中文词汇. 这里就用到了我所听过的一个库jieba,可以将中文语句拆解成一个个的词汇.这…
Index1.到底什么是不平衡数据2.处理不平衡数据的理论方法3.Python里有什么包可以处理不平衡样本4.Python中具体如何处理失衡样本印象中很久之前有位朋友说要我写一篇如何处理不平衡数据的文章,整理相关的理论与实践知识(可惜本人太懒了,现在才开始写),于是乎有了今天的文章.失衡样本在我们真实世界中是十分常见的,那么我们在机器学习(ML)中使用这些失衡样本数据会出现什么问题呢?如何处理这些失衡样本呢?以下的内容希望对你有所帮助!到底什么是不平衡数据失衡数据发生在分类应用场景中,在分类问题…
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生物信息学到金融学,SVD 是提取信息的强大工具. SVD 场景 信息检索-隐形语义检索(Lstent Semantic Indexing, LSI)或 隐形语义分析(Latent Semantic Analysis, LSA) 隐性语义索引:矩阵 = 文档 + 词语 是最早的 SVD 应用之一,我们…
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/machinelearn…