torch.nn.MSELoss()函数解读】的更多相关文章

转载自:https://www.cnblogs.com/tingtin/p/13902325.html…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
import torch x = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20,30是指维度output = m(x)print('m.weight.shape:\n ', m.weight.shape)print('m.bias.shape:\n', m.bias.shape)print('output.shape:\n', output.shape) # ans = torch.mm(input,t…
123456789101112lstm=nn.LSTM(input_size,                     hidden_size,                      num_layers)x                         seq_len,                          batch,                              input_sizeh0            num_layers× \times×num_di…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
Pytorch_torch.nn.MSELoss 均方损失函数作用主要是求预测实例与真实实例之间的loss loss(xi,yi)=(xi−yi)2 函数需要输入两个tensor,类型统一设置为float,否则会报错,也可以在全局设置torch.set_default_tensor_type(torch.FloatTensor),也可以在计算时转换 loss=torch.nn.MSELoss() c=torch.tensor([[1,2],[3,4]]) d=torch.tensor([[5,6…
模型训练的三要素:数据处理.损失函数.优化算法    数据处理(模块torch.utils.data) 从线性回归的的简洁实现-初始化模型参数(模块torch.nn.init)开始 from torch.nn import init # pytorch的init模块提供了多中参数初始化方法 init.normal_(net[0].weight, mean=0, std=0.01) #初始化net[0].weight的期望为0,标准差为0.01的正态分布tensor init.constant_(…
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor 参数: tensor:一个n维的torch.Tensor val:用于填满tensor的值 举例: w = torch.empty(,) nn.init.constant_(w, 0.3) 返回: tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000], […
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/functional/#_1 class torch.nn.Softmax(input, dim) 或: torch.nn.functional.softmax(input, dim) 对n维输入张量运用Softmax函数,将张量的每个元素缩放到(0,1)区间且和为1.Softmax函数定义如下: 参数: dim:指明维度,dim=0表示按列计算:dim=1表示按行…
torch.nn.utils.clip_grad_norm(parameters, max_norm, norm_type=2) 1.梯度裁剪原理(http://blog.csdn.net/qq_29340857/article/details/70574528) 既然在BP过程中会产生梯度消失/爆炸(就是偏导无限接近0,导致长时记忆无法更新),那么最简单粗暴的方法,设定阈值,当梯度小于/大于阈值时,更新的梯度为阈值,如下图所示: 优点:简单粗暴 缺点:很难找到满意的阈值 2.nn.utils.…