spark 读取Geomesa(Hbase)数据】的更多相关文章

package com.grady.geomesa import org.apache.hadoop.conf.Configuration import org.apache.spark.SparkConf import org.apache.spark.sql.{DataFrame, SparkSession} import org.geotools.data.Query import org.locationtech.geomesa.spark.{GeoMesaSpark, GeoMesaS…
读取结构化数据 Spark可以从本地CSV,HDFS以及Hive读取结构化数据,直接解析为DataFrame,进行后续分析. 读取本地CSV 需要指定一些选项,比如留header,比如指定delimiter值,用,或者\t或者其他. import org.apache.spark.sql.{DataFrame, SparkSession}object ReadCSV { val spark: SparkSession = SparkSession .builder() .appName(Spar…
1 RDD编程实战案例一 数据样例 字段说明: 其中cid中1代表手机,2代表家具,3代表服装 1.1 计算订单分类成交金额 需求:在给定的订单数据,根据订单的分类ID进行聚合,然后管理订单分类名称,统计出某一天商品各个分类的成交金额,并保存至Mysql中 (1)法一,将json数据解析出来,直接使用 object IncomeKpi { private val logger: Logger = LoggerFactory.getLogger(IncomeKpi.getClass) def ma…
在日常工作中,有时候需要读取mysql的数据作为DataFrame数据源进行后期的Spark处理,Spark自带了一些方法供我们使用,读取mysql我们可以直接使用表的结构信息,而不需要自己再去定义每个字段信息.下面是我的实现方式. 1.mysql的信息: mysql的信息我保存在了外部的配置文件,这样方便后续的配置添加. mysql的信息我保存在了外部的配置文件,这样方便后续的配置添加. //配置文件示例: [hdfs@iptve2e03 tmp_lillcol]$ cat job.prope…
object SaprkReadHbase { var total:Int = 0 def main(args: Array[String]) { val spark = SparkSession .builder() .master("local[2]") .appName("Spark Read Hbase ") .enableHiveSupport() //如果要读取hive的表,就必须使用这个 .getOrCreate() val sc= spark.spa…
Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712([点我])(https://yq.aliyun.com/articles/60712), 不过这篇文章使用的spark貌似是spark1.x的.我这里主要是改为了spark2.x的方式 kafka生产数据 闲话少叙,直接上代码: import java.util.{Properties, UUID…
这里的SparkSQL是指整合了Hive的spark-sql cli(关于SparkSQL和Hive的整合,见文章后面的参考阅读). 本质上就是通过Hive访问HBase表,具体就是通过hive-hbase-handler . 环境篇 hadoop-2.3.0-cdh5.0.0 apache-hive-0.13.1-bin spark-1.4.0-bin-hadoop2.3 hbase-0.96.1.1-cdh5.0.0 部署情况如下图:   测试集群,将Spark Worker部署在每台Dat…
一.概述 在实时应用之中,难免会遇到往NoSql数据如HBase中写入数据的情景.题主在工作中遇到如下情景,需要实时查询某个设备ID对应的账号ID数量.踩过的坑也挺多,举其中之一,如一开始选择使用NEO4J图数据库存储设备和账号的关系,当然也有其他的数据,最终构成一个复杂的图关系,但是这个图数据库免费版是单机安装(集群要收费),在实时写入和查询关系的时候,导致我们一台服务器内存和cpu损耗严重,为了保证Hadoop集群的稳定性,只好替换掉这个数据库,采用流行的HBase.本文就HBase的使用心…
mapreducer编程模型是一种八股文的代码逻辑,就以用户行为分析求流存率的作为例子 1.map端来说:必须继承hadoop规定好的mapper类:在读取hbase数据时,已经有现成的接口 TableMapper,只需要规定输出的key和value的类型 public class LoseUserMapper extends TableMapper<KeyStatsDimension, Text> { //////////省去代码 在执行map方法前会执行setup方法,在流失率的时候 比如…
将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": "userlog", "fields": [ {"name": "ip","type": "string"}, {"name": "identity"…