「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力是枚举bfs的分层,然后检查合法性. 但是我们注意到一个事情,节点\(i\)与节点\(i-1\)是否在同一层,是不是具有独立性呢? 设\(s_i\)表示\(i\)与\(i+1\)是否在同一层,当\(s_i=1\)时,表示不在同一层. 那么 \(s_1=1\),显然 若区间\([l,r]\)是同层的,…
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为\(K\),求取法的方案数,答案模\(1000000007\). Input 一行两个整数\(N,K\) Output 一行为答案. HINK 对于\(100\%\)的数据,\(1≤N≤1000000,0≤K≤N\): 设交集拥有元素集合\(S\)的取法方案数为\(f(S)\),有 \[…
P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正整数\(N,M\),为图的顶点数与边数. 接下来\(M\)行,每行2个正整数\(x,y\),表示有一条顶点\(x\)连向顶点\(y\)的边,请注意可能有自环与重边. 输出格式: 共\(N\)行,每行一个非负整数,第\(i\)行输出从顶点1到顶点\(i\)有多少条不同的最短路,由于答案有可能会很大,你…
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\),有\(P_i>P_{\lfloor i/2 \rfloor}\). 计算\(1,2,...N\)的排列中有多少是\(Magic\)的,答案可能很大,只能输出模\(P\)以后的值 输入输出格式 输入格式: 输入文件的第一行包含两个整数\(n\)和\(p\),含义如上所述. 输出格式: 输出文件中仅包含一…
interlinkage: https://jzoj.net/senior/#contest/show/2703/3 description: solution: 考虑容斥原理,枚举不合法的走的步数 $f_{p,x,y}$表示任意走$p$步走到$x$,$y$的方案数 $g_{p,x}$表示走不合法的步走$p$步走到$(10*x,10*x)$的方案数 $g$数组很好得到,发现$f$数组直接暴力转移时间复杂度不对 但是随意走在横轴和竖轴上是独立的,因此我们可以设$fx_{p,x}$表示在横轴上走$p…
题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. 在这个矩阵中你需要在每个格子中填入 1..m中的某个数. 给这个矩阵填数的时候有一些限制,给定 n 个该矩阵的子矩阵,以及该子矩阵的最大值 v,要求你所填的方案满足该子矩阵的最大值为 v. 现在,你的任务是求出有多少种填数的方案满足 n 个限制. 两种方案是不一样的当且仅当两个方案至少存在一个格子上…
转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6642573 部分解题报告添加新内容,除了原有的"大致题意"和"解题思路"外, 新增"Source修正",因为原Source较模糊,这是为了帮助某些狂WA的同学找到测试数据库,但是我不希望大家利用测试数据打表刷题 PS:部分题目的评论中也有给出了测试数据,未必完全,仅供参考 这个POJ分类版本是被我修改过的,现在还在根据…
这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联通分量里面只有这一道题. 题目是这样的: “每个人都拥有一个梦,即使彼此不相同,能够与你分享,无论失败成功都会感动.爱因为在心中,平凡而不平庸,世界就像迷宫,却又让我们此刻相逢Our Home.” 在爱的国度里有N个人,在他们的心中都有着一个爱的名单,上面记载着他所爱的人(不会出现自爱的情况).爱是…
经典好题. 题意是要我们找出所有的正方形.1000点,只有枚举咯. 如图,如果我们知道了正方形A,B的坐标,便可以推测出C,D两点的坐标.反之,遍历所有点作为A,B点,看C,D点是否存在.存在的话正方形数+1. 假设A点坐标为(x1,y1),B点坐标为(x2,y2),则根据三角形全等,易知 C点坐标:( x1+(y2-y1),y1-(x2-x1) ) D点坐标:( x2+(y2-y1),y2-(x2-x1) ) 当然,如果我们遍历任意两个点,一个正方形将会被计数四次(四条边).我们可以只判断斜率…