Language: Default Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 33986   Accepted: 14892 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric seq…
传送门: http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 61731   Accepted: 27632 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the…
Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 38980   Accepted: 17119 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ...…
链接:http://poj.org/problem?id=2533 题解 #include<iostream> using namespace std; ]; //存放数列 ]; //b[i]表示以a[i]为结尾的子序列的最大长度 int main(){ int n; scanf("%d",&n); ;i<n;i++) scanf("%d",&a[i]); dp[]=; ;i<n;i++){ ;j<i;j++) //对于…
Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 47465   Accepted: 21120 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ...…
Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, seq…
一.Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, seq…
传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, s…
最长公共自序列LIS 三种模板,但是邝斌写的好像这题过不了 N*N #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; ],dp[],n; int Lis(){ dp[]=; ; ; ;i<=n;i++){ temp=; ;j<i;j++){ if(dp[j]>temp&&a[i]>a[j]){ temp=dp[j]; }…
题目链接:http://poj.org/problem?id=2533 思路分析:该问题为经典的最长递增子序列问题,使用动态规划就可以解决: 1)状态定义:假设序列为A[0, 1, .., n],则定义状态dp[i]为以在所有的递增子序列中以A[i]为递增子序列的最后一个数字的所有递增子序列中的最大长度: 如:根据题目,在所有的以3结尾的递增子序列有[3]和[1, 3],所以dp[2] =2; 2)状态转移方程:因为当A[j] < A[i]时(0<= j < i),dp[i] = Max…