elasticsearch5.3.0 bulk index 性能调优实践 通俗易懂…
Java 应用性能调优实践 Java 应用性能优化是一个老生常谈的话题,笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层.数据库层.框架层.JVM 层.通过介绍 Java 性能诊断工具和思路,给出搜狗商业平台的性能优化案例以供参考.   Java 应用性能优化是一个老生常谈的话题,典型的性能问题如页面响应慢.接口超时,服务器负载高.并发数低,数据库频繁死锁等.尤其是在“糙快猛”的互联网开发模式大行其道的今天,随着系统访问量的日益增加和代码的臃肿,各种性能问题开始纷至沓来.Java…
前言 在遇到实际性能问题时,除了关注系统性能指标.还要结合应用程序的系统的日志.堆栈信息.GClog.threaddump等数据进行问题分析和定位.关于性能指标分析可以参考前一篇JVM性能调优实践--性能指标分析. JVM的调优和故障处理可以使用JDK的几个常用命令工具.因为本文是基于Docker容器内部的Springboot服务.需要调整一下docker容器的启动参数,才可以使用jmap等工具.jmap命令需要使用Linux的Capability的PTRACE_ATTACH权限.而Docker…
Java 应用性能优化是一个老生常谈的话题,笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层.数据库层.框架层.JVM 层.通过介绍 Java 性能诊断工具和思路,给出搜狗商业平台的性能优化案例以供参考.   Java 应用性能优化是一个老生常谈的话题,典型的性能问题如页面响应慢.接口超时,服务器负载高.并发数低,数据库频繁死锁等.尤其是在“糙快猛”的互联网开发模式大行其道的今天,随着系统访问量的日益增加和代码的臃肿,各种性能问题开始纷至沓来.Java 应用性能的瓶颈点非常多,比…
序言Kakfa MirrorMaker是Kafka 官方提供的跨数据中心的流数据同步方案.其实现原理,其实就是通过从Source Cluster消费消息然后将消息生产到Target Cluster,即普通的消息生产和消费.用户只要通过简单的consumer配置和producer配置,然后启动Mirror,就可以实现准实时的数据同步. 1. Kafka MirrorMaker基本特性Kafka Mirror的基本特性有: 在Target Cluster没有对应的Topic的时候,Kafka Mir…
1 导论 JVM主要有两类调优标志:布尔标志和附带参数标志 布尔标志:-XX:+FlagName表示开启,­-XX:-FlagName表示关闭. 附带参数标志:-XX:FlagName=something,表示将标志FlagName的值设置为something. 2 性能测试方法 性能测试4项原则: 2.1 原则1:测试真实应用 2.2 原则2:理解处理时间.吞吐量和响应时间 2.3 原则3:用统计方法应对性能的变化 2.4 原则4:尽早频繁测试 3 性能调优工具 3.1 Java监控工具 jc…
最近居家中,对自己之前做的一些工作进行总结.正好有Doris社区的小伙伴吐槽向量化的导入性能表现并不是很理想,就借这个机会对之前开发的向量化导入的工作进行了性能调优,取得了不错的优化效果.借用本篇手记记录下一些性能优化的思路,抛砖引玉,希望大家多多参与到性能优化的工作总来. 1.看起来很慢的向量化导入 问题的发现 来自社区用户的吐槽:向量化导入太慢了啊,我测试了xx数据库,比Doris快不少啊.有招吗? 啊哈?慢这么多吗? 那我肯定得瞅一瞅了. 于是对用户case进行了复现,发现用户测试的是代码…
项目背景 最近,做一个按优先级和时间先后排队的需求.用 Redis 的 sorted set 做排队队列. 主要使用的 Redis 命令有, zadd, zcount, zscore, zrange 等. 测试完毕后,发到线上,发现有大量接口请求返回超时熔断(超时时间为3s). Error日志打印的异常堆栈为: redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the po…
Index(索引)这个概念对于很多熟悉关系型数据库的人来说,不是一个陌生的概念.当表中数据越来越多时,在查询时,为了避免全表查询(sequence scan)可以在查询相关的条件字段上添加索引.举例来说明index对于查询效率的影响.首先创建测试表 "sort_test",如下时表创建SQL,可以发现此表有2个字段id和salary.其中id是主键,我们知道属于主键的字段是默认添加了索引的. CREATE TABLE public.sort_test ( id bigint NOT N…
作者:vivo 互联网服务器团队- Chen Dongxing.Li Haoxuan.Chen Jinxia 随着业务的日渐复杂,性能优化俨然成为了每一位技术人的必修课.性能优化从何着手?如何从问题表象定位到性能瓶颈?如何验证优化措施是否有效?本文将介绍分享 vivo push 推荐项目中的性能调优实践,希望给大家提供一些借鉴和参考. 一.背景介绍 在 Push 推荐中,线上服务从 Kafka 接收需要触达用户的事件,之后为这些目标用户选出最合适的文章进行推送.服务由 Java 开发,CPU 密…