pandas之cut(),qcut()】的更多相关文章

功能:将数据进行离散化 可参见博客:https://blog.csdn.net/missyougoon/article/details/83986511 , 例子简易好懂 1.pd.cut函数有7个参数,主要用于对数据从最大值到最小值进行等距划分  pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False) 参数: x : 输入待cut的一维数组 bins : cut…
qcut与cut的主要区别: qcut:传入参数,要将数据分成多少组,即组的个数,具体的组距是由代码计算 cut:传入参数,是分组依据.具体见示例 1.qcut方法,参考链接:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html 1).参数:pandas.qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise') >>>…
cut( )用来把一组数据分割成离散的区间. cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise') # x:被切分的数据,必须是一维的 # bins:①int型整数:将x按照数值大小平均分成分成bins份,x的范围在最左侧和最右侧分别扩展0.1%以包括最大值和最小值 #②标量序列:自定义分组的每个区间,此时严格按照给定的区间分割,x最左…
第16天pandas的基本功能(一) 灵活的二进制操作 体现在2个方面 支持一维和二维之间的广播 支持缺失值数据处理 四则运算支持广播 +add - sub *mul /div divmod()分区和模运算(返回商和余数2个结果) 案例:a,b=divmod(一维矩阵) 空值处理 矩阵中空值用NaN代替 NaN+值=NaN np(numpy).nan表示空值 填充空值: fillna(value=值) np.nan == np.nan 结果为False 如果a矩阵和b矩阵中有空值 那么 a ==…
pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=, include_lowest=False) x:要分箱的输入数组,必须是一维的 bins:int或标量序列 若bins是一个int,它定义在x范围内的等宽单元的数量.然而,在这种情况下,x的范围在每一侧延伸0.1%以包括x的最小值或最大值 若bins是一个序列,它定义了允许非均匀bin宽度的bin边缘.在这种情况下不进行x的范围的扩展 ri…
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编程语言(如Python.Perl.R或Java)或UNIX文本处理工具(如sed或awk)对数据格式进行专门处理.幸运的是,pandas和内置的Python标准库提供了一组高级的.灵活的.快速的工具,可以让你轻松地将数据变为想要的格式. 在本部分,我们会讨论处理缺失数据.重复数据.字符串操作和其他分…
import pandas as pd import numpy as np 分割-apply-聚合 大数据的MapReduce The most general-purpose GroupBy method is apply, which is the subject of the rest of this section. As illustrated in Figure 10-2, apply splits the object being manipulated into pieces,…
那年夏天抓住了蝉的尾巴 gitbook 前言 pandas 抓住 Series (排序的字典), DataFrame (row + 多个 Series) 对象 , 就如同 numpy 里抓住 ndarray 多维数组一样 可是人的精力始终是有限的,没有过目不忘的本领,那就记住 API 以及常用参数, 其他的交给字典吧 下面学习 示例 可能会用到的 两个函数 def pretty_print(text='',star_cnt=20): stars = '*'*star_cnt print('{st…
数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习Python,可以先了解一下Python的学习路线. python学习路线:https://www.analyticsvidhya.com/learning-paths-data-science-business-analytics-business-intelligence-big-data/lea…
Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame({"a": ["aa", np.NAN, np.NAN], "b": [3, np.NAN, 2]}) 判断某列是否有NaN >>> df.a.isnull().any() True 判断是否全部为 NAN >>>…