用scikit-learn和pandas学习Ridge回归】的更多相关文章

本文将用一个例子来讲述怎么用scikit-learn和pandas来学习Ridge回归. 1. Ridge回归的损失函数 在我的另外一遍讲线性回归的文章中,对Ridge回归做了一些介绍,以及什么时候适合用 Ridge回归.如果对什么是Ridge回归还完全不清楚的建议阅读我这篇文章. 线性回归原理小结 Ridge回归的损失函数表达形式是: \(J(\mathbf\theta) = \frac{1}{2}(\mathbf{X\theta} - \mathbf{Y})^T(\mathbf{X\thet…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
  用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整个流程,通过一个简单的回归的例子,可以看到: 数据的准备 ,数据的维度? 用哪个模型,如何训练,如何评价,可视化? 有一系列的东西需要去落地,推导理解十一方面,同时也要会用. 就这个回归的例子,和之前的 GMM 的例子很像,整个一套流程的东西很像,但是这里我们是用 sklearn 这个框架来完成的.…
最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function = (y_hat -y )^2的一个特例,类似的像各位说的还可以用各种距离度量来作为loss function而不仅仅是欧氏距离.所以loss function可以说是一种更一般化的说法. 最大似然估计是从概率角度来想这个问题,直观理解,似然函数在给定参数的条件下就是观测到一组数据realizat…
网址:https://www.cnblogs.com/pinard/p/6023000.html 线性回归和交叉验证 import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import datasets,linear_model 读取csv里面的数据 data = pd.read_excel("F:\data\CCPP\Folds5x2_pp.xlsx"); x = dat…
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦.:) 这里我们用UCI大学公开的机器学习数据来跑线性回归. 数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant 数据的下载地址在这: http://archive.ics.uci.edu/ml/ma…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为"二维矩阵.表格.字典",可以视为是由 Series 组成的字典. 创建 import pandas as pd data = { 'Frank' : [25, 'male', 'reading'], 'Lily' : [22, 'female', 'running'] } frame =…