1.<Visualizing and Understanding Convolutional Networks> 2.<Adaptive deconvolutional networks for mid and high level feature learning> 3.<Stacked What-Where Auto-encoders> https://blog.csdn.net/lemianli/article/details/53171951 https://b…
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example. In tf.nn, there are 4 closely related 2d conv functions: tf.nn.conv2d tf.nn.conv2d_backprop_filter tf.nn.conv2d_backprop_i…
论文提出引入少数超大卷积核层来有效地扩大有效感受域,拉近了CNN网络与ViT网络之间的差距,特别是下游任务中的性能.整篇论文阐述十分详细,而且也优化了实际运行的表现,值得读一读.试一试 来源:晓飞的算法工程笔记 公众号 论文: Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs 论文地址:https://arxiv.org/abs/2203.06717 论文代码:https://github.com…