搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同. 记号:  i,o,k,p,s i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size input size,卷积/反卷积输出大小 output size output size,卷积/反卷积核大小 kerne…
CNN的计算方式: w1 = (w - F_w + 2p) / s_w + 1 h1 = (h - F_h + 2p) / s_h + 1 其中 w, h 分别为上一层的宽高, Filters(kernel)的大小为 F_w, F_h strides 步长为: s_w, s_h p 为padding 的大小 DeCNN 的计算方式: w1 = (w -1 )* s_w + F_w - 2p h1 = (h -1 )* s_h + F_h - 2p 其中 w, h 分别为上一层的宽高, Filte…
1.<Visualizing and Understanding Convolutional Networks> 2.<Adaptive deconvolutional networks for mid and high level feature learning> 3.<Stacked What-Where Auto-encoders> https://blog.csdn.net/lemianli/article/details/53171951 https://b…
『cs231n』卷积神经网络的可视化与进一步理解 深度学习小白——卷积神经网络可视化(二) TensorBoard--TensorFlow可视化 原文地址:http://blog.csdn.net/hjimce/article/details/50544370 作者:hjimce 一.相关理论 本篇博文主要讲解2014年ECCV上的一篇经典文献:<Visualizing and Understanding Convolutional Networks>,可以说是CNN领域可视化理解的开山之作,…
(1)边长的计算公式是:  output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1 输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为: (200-5+2*1)/2+1 为9…
反卷积(转置卷积.空洞卷积(微步卷积))近几年用得较多,本篇博客主要是介绍一下反卷积,尤其是怎么计算反卷积(选择反卷积的相关参数) 图1 空洞卷积(微步卷积)的例子,其中下面的图是输入,上面的图是输出,显然这是一个upsampling的过程,我们也称为反卷积. 首先,既然本文题名为反卷积(Deconvolution),当然就是要介绍各种反卷积,不得不说的是随着近几年人工智能如火如荼,大牛纷纷在各个角度开始深入研究这个深度学习,这当然就是更广了同时也更深了,但是只要抓住深度学习的命门,其实很多工作…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
在架构内容设计方面,其中一个比较有帮助的想法是使用1x1卷积.1x1卷积能做什么? 对于6x6x1的通道的图片来说,1x1卷积效果不佳,如果是一张6x6x32的图片,那么使用1x1卷积核进行卷积效果更好. 1x1卷积所实现的功能是,遍历36(6x6)个单元,计算左图中32个数字和卷积核中32个数字的乘积(element wise),然后应用于ReLU非线性函数. 这种方法称为1x1卷积,有时候也被称为Network in Network 我们可以用池化层压缩输入的高度与宽度,而1x1卷积可以改变…
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool1:14x14x6 卷积核:5x5,stride=1 得到Conv2:10x10x16 池化层Pool2:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool2:5x5x16 然后将Pool2展开,得到长度为400的向量 经过第一个全连接层,…
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转.平移.缩放.剪裁性.为什么要做这个很奇怪的结构呢?原因还是因为CNN不够鲁棒,比如把一张图片颠倒一下,可能就不认识了(这里mark一下,提高CNN的泛化能力,值得继续花很大力气,STN是一个思路,读者以及我自己应该多想想,还有什么方法?). 今天介绍的这一篇可变形卷积网络deformable co…
本文介绍以下几个CNN经典模型:Lenet(1986年).Alexnet(2012年).GoogleNet(2014年).VGG(2014年).Deep Residual Learning(2015年) 1.LeNet-5 Lenet-5是一个经典的CNN网络模型,几乎所有讲CNN的资料都会提到该模型:该模型是为了识别手写字体和计算机打印字符而设计的, 而且该模型确实在手写体识别领域非常成功,曾被广泛应用于美国银行支票手写体识别. 具体的论文和例子可以参考:http://yann.lecun.c…
如何评价Dual Path Networks(DPN)? 论文链接:https://arxiv.org/pdf/1707.01629v1.pdf在ImagNet-1k数据集上,浅DPN超过了最好的ResNeXt-101(64×4d),具有26%更小的模型尺寸,25%的计算成本和8%的更低的内存消耗 5 个回答 xiaozhi CV.ML.DL   1.针对视觉识别任务的“网络工程”一直是研究的重点,其重在设计更为高效的网络拓扑结构,一方面考虑更好的特征表示学习,另一方面尽可能减少计算复杂度和内存…
在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等.目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的feature map上采样(反卷积)到输入图像的尺寸空间,就是反卷积层.那么它在tensorflow里是怎么实现的呢?本篇博文讲介绍这方面的内容. 1. 反卷积函数介绍 tf.nn.conv2d_transpose(value, filter, output_shape, strides, padd…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视…
今天,主要和大家分享一下最近研究的卷积网络和它的一些变种. 首先,介绍一下基础的卷积网络. 通过PPT上的这个经典的动态图片可以很好的理解卷积的过程.图中蓝色的大矩阵是我们的输入,黄色的小矩阵是卷积核(kernel,filter),旁边的小矩阵是卷积后的输入,通常称为feature map. 从动态图中,我们可以很明白的看出卷积实际上就是加权叠加. 同时,从这个动态图可以很明显的看出,输出的维度小于输入的维度.如果我们需要输出的维度和输入的维度相等,这就需要填充(padding). 现在我们来看…
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    3*3的卷积经过扩张以后形成了5*5                          feature_map为偶数                                              feature_map为偶数 代码:主函数 with tf.variable_scope('…
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example. In tf.nn, there are 4 closely related 2d conv functions: tf.nn.conv2d tf.nn.conv2d_backprop_filter tf.nn.conv2d_backprop_i…
deconvolution讲解论文链接:https://arxiv.org/abs/1609.07009 关于conv和deconvoluton的另一个讲解链接:http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic 参考博客:https://blog.csdn.net/itleaks/article/details/8…
1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2): 卷积的过程为:Conv(I,W)=O 反卷积的过称为:Deconv(W,O)=I(需要对此时的 O 的边缘进行延拓 padding) 2. 步长与重叠 卷积核移动的步长(stride)小于卷积核的边长(一般为正方行)时,变会出现卷积核与原始输入矩阵作用范围在区域上的重叠(overlap),卷积核移动的步长(stride)与卷积核的边长相一致时,不会出现重叠现象.…
import numpy as np # from enthought.mayavi import mlab ''' ogrid[-1:5:6j,-1:5:6j] [array([[-1. ], [ 0.2], [ 1.4], [ 2.6], [ 3.8], [ 5. ]]), array([[-1. ,  0.2,  1.4,  2.6,  3.8,  5. ]])] ''' x,y = np.ogrid[-2:2:20j,-2:2:20j]  #返回两个数组,一个长度为1,一个列数为1.前三…
文章来源:https://www.jianshu.com/p/01577e86e506 pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_si…
1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2): 卷积的过程为:Conv(I,W)=O 反卷积的过称为:Deconv(W,O)=I(需要对此时的 O 的边缘进行延拓 padding) 2. 步长与重叠 卷积核移动的步长(stride)小于卷积核的边长(一般为正方行)时,变会出现卷积核与原始输入矩阵作用范围在区域上的重叠(overlap),卷积核移动的步长(stride)与卷积核的边长相一致时,不会出现重叠现象.…
反卷积的具体计算步骤 令图像为 卷积核为 case 1 如果要使输出的尺寸是 5x5,步数 stride=2 ,tensorflow 中的命令为: transpose_conv = tf.nn.conv2d_transpose(value=input, filter=kernel, output_shape=[1,5,5,1], strides=2, padding='SAME') 当执行 transpose_conv 命令时,tensorflow 会先计算卷积类型.输入尺寸.步数和输出尺寸之间…
Transposed convolutions也称作fractionally strided convolutions(本人比较喜欢这个称呼,比较直观),Upconvolution,deconvolutions i:表示一般卷积时候的输入图片的大小i*i               i':表示反卷积时候的输入图片的大小 k:表示一般卷积时候的kernel的大小i*i                 k'=k s:表示stride大小                               …
前几天跟同事聊到最近在看什么小说,想起之前看过一篇文章说的是网络十大水文,就想把起点上的小说信息爬一下,搞点可视化数据看看.这段时间正在看爬虫框架-pyspider,觉得这种网站用框架还是很方便的,所以今天就给大家带来这篇---起点中文网小说爬取.可视化我们放到下一集. 安装使用 安装和基本使用请查看pyspider中文文档,我们这篇主要不是介绍pyspider哦.Mac安装的过程中出现了一些问题,请看Mac安装pycurl失败,装好以后使用pyspider all启动.然后打开浏览器输入:ht…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
论文提出引入少数超大卷积核层来有效地扩大有效感受域,拉近了CNN网络与ViT网络之间的差距,特别是下游任务中的性能.整篇论文阐述十分详细,而且也优化了实际运行的表现,值得读一读.试一试   来源:晓飞的算法工程笔记 公众号 论文: Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs 论文地址:https://arxiv.org/abs/2203.06717 论文代码:https://github.com…
一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二.经典网络 1.LeNet-5 该网络主要针对灰度图像训练的,用于识别手写数字. 该网络是在1980s提出的,当时很少用到Padding,所以可以看到随着网络层次增加,图像的高度和宽度都是逐渐减小的,深度则不断增加. 另外当时人们会更倾向于使用Average Pooling,但是现在则更推荐使用Max…
1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based learning applied to document recognition,NG建议重点读II部分,泛读III部分):这个网络大概60k个参数.那个时期习惯于用average pooling(现在是max pooling),sigmoid/tanh(现在是ReLU),最后的分类函数现在已经不常用了(…