OpenCV成长之路:图像直方图的应用 2014-04-11 13:57:03 标签:opencv 图像 直方图 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://ronny.blog.51cto.com/8801997/1394118 正如第4篇文章所说的图像直方图在特征提取方面有着很重要的作用,本文将举两个实际工程中非常实用的例子来说明图像直方图的应用. 一.直方图的反向映射. 我们以人脸检测举例,在人脸检测中,我们第一步往…
http://ronny.blog.51cto.com/8801997/1394138 OpenCV成长之路:图像滤波 2014-04-11 14:28:44 标签:opencv 边缘检测 sobel 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://ronny.blog.51cto.com/8801997/1394138 滤波实际上是信号处理里的一个概念,而图像本身也可以看成是一个二维的信号.其中像素点灰度值的高低代表信号的强…
http://ronny.blog.51cto.com/8801997/1394139 OpenCV成长之路:直线.轮廓的提取与描述 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://ronny.blog.51cto.com/8801997/1394139 基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条.轮廓.块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以…
数学形态学实际上可以理解为一种滤波行为,所以很多地方称它为形态学滤波.有了个这概念,我们就能更好的理解它.我们滤波中用的滤波器(kernel)在这里被称为结构元素,结构元素往往是由一个特殊的形状构成,如:线条.矩形.圆.菱形等.我们把结构元素的中心(Anchor Point)与图像上像素点对齐,然后结构元素覆盖的领域像素就是我们要分析的像素,我们定义一种操作就形成了一种形态学运算. 我们在这里不解释形态学操作的算法原理及它们的意义,有兴趣的可以参见相关数字图像处理方面的教材,或关注本博客,博主打…
我们在实际应用中对图像进行的操作,往往并不是将图像作为一个整体进行操作,而是对图像中的所有点或特殊点进行运算,所以遍历图像就显得很重要,如何高效的遍历图像是一个很值得探讨的问题. 一.遍历图像的4种方式:at<typename>(i,j) Mat类提供了一个at的方法用于取得图像上的点,它是一个模板函数,可以取到任何类型的图像上的点.下面我们通过一个图像处理中的实际来说明它的用法. 在实际应用中,我们很多时候需要对图像降色彩,因为256*256*256实在太多了,在图像颜色聚类或彩色直方图时,…
视频中包含的信息量要远远大于图片,对视频的处理分析也越来越成为计算机视觉的主流,而本质上视频是由一帧帧的图像组成,所以视频处理最终还是要归结于图像处理,但在视频处理中,有更多的时间维的信息可以利用.本文主要介绍OpenCV在处理视频时的一些基本函数. 一.视频帧的读取 OpenCV为视频的读入提供了一个类VideoCapture,下面我们说明一下类的几个重要的方法: 1,打开一段视频或默认的摄像头 有两种方法,一种是在定义类的时候,一种是用open()方法. VideoCapture captu…
特征点又称兴趣点.关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像.进行图像配准.进行3D重建等.本文主要介绍OpenCV中几种定位与表示关键点的函数. 一.Harris角点 角点是图像中最基本的一种关键点,它是由图像中一些几何结构的关节点构成,很多都是线条之间产生的交点.Harris角点是一类比较经典的角点类型,它的基本原理是计算图像中每点与周围点变化率的平均值.    (1)   (2) 其中I(x+u,y+u)代表了点(x,y)邻域点的灰度值.通过变换可以将上…
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条.轮廓.块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用. 一.Canny检测轮廓 在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的丰富边缘和高阈值时的边缘缺失这两个问题.而canny算子则很好的弥补了这一不足,从目前看来,canny边缘检测在…
滤波实际上是信号处理里的一个概念,而图像本身也可以看成是一个二维的信号.其中像素点灰度值的高低代表信号的强弱. 高频:图像中灰度变化剧烈的点. 低频:图像中平坦的,灰度变化不大的点. 根据图像的高频与低频的特征,我们可以设计相应的高通与低通滤波器,高通滤波可以检测图像中尖锐.变化明显的地方:低通滤波可以让图像变得光滑,滤除图像中的噪声. 下面我们来看一下OpenCV中的一些滤波函数: 一.低通滤波 1,blur函数 这个函数是一个平滑图像的函数,它用一个点邻域内像素的平均灰度值来代替该点的灰度.…
正如第4篇文章所说的图像直方图在特征提取方面有着很重要的作用,本文将举两个实际工程中非常实用的例子来说明图像直方图的应用. 一.直方图的反向映射. 我们以人脸检测举例,在人脸检测中,我们第一步往往需要先提取图像中皮肤区域来缩小人脸的检测范围,这一般获得皮肤的颜色范围还需要定义阈值并不断的调整,实际中参数太多而不容易控制. 这里我们就可以考虑用直方图的反射映射. 1,收集人脸皮肤样本. 2,拼合样本并计算其颜色直方图. 3,将得到的样本颜色直方图反射映射到待检测的图片中,然后进行阈值化即可. 这里…