看李政轩老师讲的Kernel,讲的非常好!前面有几道作业题,用MATLAB简单做了下,不知道对不对,错误之处还请指出. 题目是这样的. 一.MATLAB版本: clear; clc % 生成training sample MU1 = [1 2]; MU2 = [4 6]; SIGMA1 = [4 4; 4 9]; SIGMA2 = [4 2; 2 4]; M1 = mvnrnd(MU1,SIGMA1,100); M2 = mvnrnd(MU2,SIGMA2,100); %生成testing sa…
对于了解机器学习中二元分类问题的来源与分析,我认为王树义老师这篇文章讲的非常好,通俗且易懂: http://blog.sciencenet.cn/blog-377709-1121098.html 但王树义老师的这篇文章并未详细的展开说明二元分类的具体实现方法,只是在宏观上的一个概述.在阅读这篇文章后,我便心生实现一个简单的二元分类并把前后过程记录下来的念头,所以本篇的主体以算法实现为主,略带分析,并不会涉及太多的理论知识.本篇以线性Logistic Regression为主要的模型工具来做一个简…
[学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8824876.html 之前介绍了图像分类问题.图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像.我们还介绍了k-Nearest Neighbor (k-NN)分类器,该分类器的基本思想是通过将测试图像与训练集带标签的图像进行比较,来给测试图像打上分类标签.k-Nearest Neighbor分类器存在以下不足: 分类器必须记住所有训练数据并将其存储起来,以…
前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:Linear Classification Note ] # number of classes, e.g. 10 loss_i = 0.0 for j in xrange(D): # iterate over all wrong classes if j == y: # skip for the…
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Linear Classification Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下 内容列表: 线性分类器简介 线性评分函数 阐明线性分类器 译者注:上篇翻译截止处 损失函数 多类SVM Softmax分类器 SVM和Softmax的比较 基于Web的可交互线性分类器原型 小结 线性分类 上一篇笔记介绍了图像分类问题.图像分类的…
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优化技术的具体载体,影响损失函数不同形式的因素主要有: 和谁比:和什么目标比较损失 怎么比:损失比较的具体度量方式和量纲是什么 比之后如何修正参数:如果将损失以一种适当的形式反馈给原线性模型上,以修正线性模式参数 在这篇文章中,笔者会先分别介绍线性回归(linear regression)和线性分类(…
//定义线性表 #define MAXSIZE 20 typedef int ElemType; typedef struct { ElemType data[MAXSIZE]; //这是数组的长度,从0开始,也就是最大长度 int length; //这是线性表的长度,表示线性表已经存储了多少个元素 }SqList; /* ************************** ************************** */ //返回线性表L的元素 typedef int Statu…
前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类.感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型. 通过梯度下降使误分类的损失函数最小化,得到了感知器模型. 本节为大家介绍实现感知机实现的具体原理代码: 学习从来不是一个人的事情,要有个相互监督的伙伴,需要学习python或者有兴趣学习python的伙伴可以私信回复QQ:或微信:ff186345,一起学习哦!!!   O(∩_∩)O 运行结果如图所示:…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…