zeppelin是spark的web版本notebook编辑器,相当于ipython的notebook编辑器. 一Zeppelin安装 (前提是spark已经安装好) 1 下载https://zeppelin.apache.org/download.html(下载编译好的bin版) 2 解压运行:sh bin/zeppelin-daemon.sh start 3 权限问题:chown –R –v mapr:mapr zeppelin 4 异常:jackson版本冲突 4.1报错: com.fas…
zeppelin是spark的web版本notebook编辑器,相当于ipython的notebook编辑器. 一Zeppelin安装 (前提是spark已经安装好) 1 下载https://zeppelin.apache.org/download.html(下载编译好的bin版) 2 解压运行:sh bin/zeppelin-daemon.sh start 3 权限问题:chown –R –v mapr:mapr zeppelin 4 异常:jackson版本冲突 4.1报错: com.fas…
Spark的分布式架构 如我们所知,spark之所以强大,除了强大的数据处理功能,另一个优势就在于良好的分布式架构.举一个例子在Spark实战--寻找5亿次访问中,访问次数最多的人中,我用四个spark节点去尝试寻找5亿次访问中,次数最频繁的ID.这一个过程耗时竟然超过40分钟,对一个程序来说,40分钟出结果这简直就是难以忍耐.但是在大数据处理中,这又是理所当然的.当然实际中不可能允许自己的程序在简单的仅处理五亿次访问中耗费如此之大的时间,因此考虑了分布式架构.(PS:当然处理5亿次请求的示例中…
主要包括以下三部分,本文为第三部分: 一. Scala环境准备 查看二. Hadoop集群(伪分布模式)安装 查看三. Spark集群(standalone模式)安装 Spark集群(standalone模式)安装 若使用spark对本地文件进行测试学习,可以不用安装上面的hadoop环境,若要结合hdfs使用spark,则可以参考上面的步骤搭建hadoop. 1. 下载安装包并解压(如:~/tools/spark-2.3.1-bin-hadoop2.7): 2. 启动服务 a.启动master…
1. RDD-(Resilient Distributed Dataset)弹性分布式数据集      Spark以RDD为核心概念开发的,它的运行也是以RDD为中心.有两种RDD:第一种是并行Collections,它是Scala collection,可以进行并行计算:第二种是Hadoop数据集,它是并行计算HDFS文件的每条记录,凡是Hadoop支持的文件系统,都可以进行操作.这两种RDD都以同样的方式处理. 1.1 RDD之并行Collections         并行Collecti…
说白了 Spark on YARN模式的安装,它是非常的简单,只需要下载编译好Spark安装包,在一台带有Hadoop YARN客户端的的机器上运行即可.  Spark on YARN简介与运行wordcount(master.slave1和slave2)(博主推荐) Spark on YARN分为两种: YARN cluster(YARN standalone,0.9版本以前)和 YARN client.    如果需要返回数据到client就用YARN client模式. 如果数据存储到hd…
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交网络.电子商务,地图等领域.对于图计算的两个核心问题:图存储模式和图计算模型,Spark GraphX给出了近乎完美的答案, 而Spark GraphX作为图计算领域的屠龙宝刀,对Pregel  API的支持更是让Spark GraphX如虎添翼.Spark GraphX可以轻而易举的完成基于度分布…
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
不多说,直接上干货! SparkSQL数据源:从各种数据源创建DataFrame 因为 spark sql,dataframe,datasets 都是共用 spark sql 这个库的,三者共享同样的代码优化,生成以及执行流程,所以 sql,dataframe,datasets 的入口都是 sqlContext. 可用于创建 spark dataframe 的数据源有很多: SparkSQL数据源:RDD val sqlContext = new org.apache.spark.sql.SQL…
不多说,直接上干货! 不带Hive支持 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.</artifactId> <version></version> </dependency> 带Hive支持(推荐使用) <dependency> <groupId>org.apache.spark&l…