14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议 14.1  动机一:数据压缩…
降维(Dimensionality Reduction) 降维的目的:1 数据压缩 这个是二维降一维 三维降二维就是落在一个平面上. 2 数据可视化 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自 己去发现了. 主成分分析(PCA)是最常见的降维算法. 在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据 都投射到该向量上时,我们希望投射平均均方误差能尽可能地小. 主成分分析与线性回归是两种不同的算法.主成分分析最小化的是投射误差(Pr…
10. Dimensionality Reduction Content  10. Dimensionality Reduction 10.1 Motivation 10.1.1 Motivation one: Data Compression 10.2.2 Motivation two: Visualization 10.2 Principal Component Analysis 10.2.1 Problem formulation 10.2.2 Principal Component An…
Kali Linux Web 渗透测试视频教程—第十四课-arp欺骗.嗅探.dns欺骗.session劫持 文/玄魂 目录 Kali Linux Web 渗透测试—第十四课-arp欺骗.嗅探.dns欺骗.session劫持      1 关于嗅探.arp欺骗.会话劫持.............................................................. 1 视频教程地址:http://edu.51cto.com/course/course_id-1887.h…
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线教程的编写,以及yarn的翻译整理表示感谢. NeHe OpenGL第四十四课:3D光晕 3D 光晕 当镜头对准太阳的时候就会出现这种效果,模拟它非常的简单,一点数学和纹理贴图就够了.好好看看吧.   大家好,欢迎来到新的一课,在这一课中我们将扩展glCamera类,来实现镜头光晕的效果.在日常生活…
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线教程的编写,以及yarn的翻译整理表示感谢. NeHe OpenGL第三十四课:地形 从高度图生成地形: 这一课将教会你如何从一个2D的灰度图创建地形 欢迎来到新的一课,Ben Humphrey写了这一课的代码,它是基于第一课所写的. 在这一课里,我们将教会你如何使用地形,你将知道高度图这个概念.…
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线教程的编写,以及yarn的翻译整理表示感谢. NeHe OpenGL第二十四课:扩展 扩展,剪裁和TGA图像文件的加载: 在这一课里,你将学会如何读取你显卡支持的OpenGL的扩展,并在你指定的剪裁区域把它显示出来.   这个教程有一些难度,但它会让你学到很多东西.我听到很多朋友问我扩展方面的内容和…
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线教程的编写,以及yarn的翻译整理表示感谢. NeHe OpenGL第十四课:图形字体 图形字体: 在一课我们将教你绘制3D的图形字体,它们可像一般的3D模型一样被变换. 这节课继续上一节课课的内容.在第13课我们学习了如何使用位图字体,这节课,我们将学习如何使用轮廓字体. 创建轮廓字体的方法类似于…
http://blog.csdn.net/pipisorry/article/details/49231919 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之降维Dimensionality Reduction {博客内容:推荐系统有一种推荐称作隐语义模型(LFM, latent factor model)推荐,这种推荐将在下一篇博客中讲到.这篇博客主要讲隐语义模型…
数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转变为低维的数据, 这样我们存储数据的矩阵的列就减少了, 那么我们需要存储的数据就减少了 数据可视化 数据可视化是非常重要的, 通过可视化数据可以发现数据的规律, 但是大多数时候我们到的数据是高维度的, 可视化很困难, 采用数据降维可以将数据降到二维进行数据可视化 加快机器学习算法的速度 维度少了程序…