首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
P4547 [THUWC2017]随机二分图(状压,期望DP)
】的更多相关文章
CF16E Fish(状压+期望dp)
[传送门[(https://www.luogu.org/problemnew/show/CF16E) 解题思路 比较简单的状压+期望.设\(f[S]\)表示\(S\)这个状态的期望,转移时挑两条活着的鱼打架.时间复杂度\(O(2^n*n^2)\). 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using n…
P4547 [THUWC2017]随机二分图(状压,期望DP)
期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应点,\(f[S][T]\) 表示从一条边没连到此状态的期望方案数 这样就有转移: \[f[S][T] <- \sum_{s \in S,t \in T}f[S \oplus s][T \oplus t] * p(s, t) \] 也就是说,从没选的点中选俩点连边.不过这可能会算重(先连 \(e_1\…
【BZOJ3925】[ZJOI2015] 地震后的幻想乡(状压期望DP)
点此看题面 大致题意: 有\(n\)个点和\(m\)条边,每条边的权值是一个\(0\sim1\)的随机实数,要你用\(n-1\)条边将图联通,问这\(n-1\)条边中边权最大值的期望最小值. 提示 这题应该是一道比较难的\(DP\)题吧. 首先,我们需要注意到提示中的一句话: \(Hint\) 对于\(n\)个\([0,1]\)之间的随机变量\(x_1,x_2,...,x_n\),第\(k\)小的那个的期望值是\(\frac k{n+1}\). 其实,这就很明显在提示我们,只要求出这\(n-1\…
uva11600 状压期望dp
一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都是安全的 dp[u][s] 为当前在u,走过的联通块为s的期望天数 那么走到剩下没有走过的连通块的概率是 (n-have)/(n-1), 那么平均需要的时间是 (n-1)/(n-have), 走到下一个没有走过的连通块的概率为cnt[i] / (n-have) 所以dp[u][s] = (n…
BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)
下称0类为单边,1类为互生边,2类为互斥边.对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2.于是有一个显然的dp,即设f[S1][S2]为左边选取S1右边选取S2对答案的贡献.转移时考虑S1中编号最小的点x与右边的点y匹配.首先将f[S1-(1<<x)][S2-(1<<y)]统计进去.然后若(x,y)是单边,或者虽存在互生互斥关系,但其对应边的左端点还不在S1中或就是x,或右端点还不在S2中或就是y,就不管了:…
洛谷 P4547 & bzoj 5006 随机二分图 —— 状压DP+期望
题目:https://www.luogu.org/problemnew/show/P4547 https://www.lydsy.com/JudgeOnline/problem.php?id=5006 参考博客:https://www.cnblogs.com/yanshannan/p/9452802.html 注意同一个点连出去的两条边本来就不能一起选! 每次调用 map 会很慢!所以修改的时候新定义一个 &tmp,就能过了. 代码如下: #include<cstdio> #inclu…
bzoj 1076 奖励关 状压+期望dp
因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstring> #include<iostream> using namespace std; int bit[18],K,n,aa,ned[18],a[18]; double f[105][1<<17]; int main() { bit[0]=1; for(int i=1;i<=…
BZOJ 1076 奖励关(状压期望DP)
当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当前方案j里具备了取k这个物品的条件 那么dp[i,j]+=max{dp[i+1,j],dp[i+1,j or 1<<(k−1)]+x[k]} 否则dp[i,j]+=dp[i+1,j] #include<cstdio> #include<iostream> using n…
HDU 4336 Card Collector:状压 + 期望dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 有n种卡片(n <= 20). 对于每一包方便面,里面有卡片i的概率为p[i],可以没有卡片. 问你集齐n种卡片所买方便面数量的期望. 题解: 状态压缩. 第i位表示手上有没有卡片i. 表示状态: dp[state] = expectation (卡片状态为state时,要集齐卡片还要买的方便面数的期望) 找出答案: ans = dp[0] 刚开始一张卡片都没有. 如何转移: now:…
[思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP
分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直接利用题目中的边组来解决问题. 对于第二类边组,如果把两条边分开考虑(可以理解为把一个第二类的边组看成两个第一类的边组).如果只有一条边出现在了完美匹配中,此时的贡献是\(50\%\),显然是正确的.如果两条边都出现在了完美匹配中,此时的贡献是\(50\% \times 50\% = 25\%\),…