PyTorch 自定义数据集】的更多相关文章

准备数据 准备 COCO128 数据集,其是 COCO train2017 前 128 个数据.按 YOLOv5 组织的目录: $ tree ~/datasets/coco128 -L 2 /home/john/datasets/coco128 ├── images │   └── train2017 │   ├── ... │   └── 000000000650.jpg ├── labels │   └── train2017 │   ├── ... │   └── 000000000650…
为什么要定义Datasets: PyTorch提供了一个工具函数torch.utils.data.DataLoader.通过这个类,我们在准备mini-batch的时候可以多线程并行处理,这样可以加快准备数据的速度.Datasets就是构建这个类的实例的参数之一. 如何自定义Datasets 下面是一个自定义Datasets的框架: class CustomDataset(data.Dataset):#需要继承data.Dataset def __init__(self): # TODO # 1…
之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dataset"之类的,但是搜出来还是没有我想要的.结果今天见鬼了突然看见了这么一个函数torch.utils.data.Subset.我的天,为什么超级开心hhhh.终于不用每次都手动划分数据集了. torch.utils.data Pytorch提供的对数据集进行操作的函数详见:https://pyt…
pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.utils.data.Dataset:所有继承他的子类都应该重写  __len()__  , __getitem()__ 这两个方法 __len()__ :返回数据集中数据的数量 __getitem()__ :返回支持下标索引方式获取的一个数据 torch.utils.data.DataLoader:…
本文将快速引导使用 MMDetection ,记录了实践中需注意的一些问题. 环境准备 基础环境 Nvidia 显卡的主机 Ubuntu 18.04 系统安装,可见 制作 USB 启动盘,及系统安装 Nvidia Driver 驱动安装,可见 Ubuntu 初始配置 - Nvidia 驱动 开发环境 下载并安装 Anaconda ,之后于 Terminal 执行: # 创建 Python 虚拟环境 conda create -n open-mmlab python=3.7 -y conda ac…
代码: https://github.com/ikuokuo/start-scaled-yolov4 Scaled-YOLOv4 代码: https://github.com/WongKinYiu/ScaledYOLOv4 论文: https://arxiv.org/abs/2011.08036 文章: https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-m…
1.将图片的路径和标签写入csv文件并实现读取 # 创建一个文件,包含image,存放方式:label pokemeon\\mew\\0001.jpg,0 def load_csv(self,filename): if not os.path.exists(os.path.join(self.root,filename)): images = [] # 将所有的信息组成一个列表,类别信息通过中间的一个路径判断 for name in self.name2label.keys(): # pokem…
对于自定义数据集的图片任务,通用流程一般分为以下几个步骤: Load data Train-Val-Test Build model Transfer Learning 其中大部分精力会花在数据的准备和预处理上,本文用一种较为通用的数据处理手段,并通过手动构建,简单模型, 层数较深的resnet网络,和基于VGG19的迁移学习. 你可以通过这个例子,快速搭建网络,并训练处一个较为满意的结果. 1. Load data 数据集来自Pokemon的5分类数据, 每一种的图片数量为200多张,是一个较…
1)前言 虽然torchvision.datasets中已经封装了好多通用的数据集,但是我们在使用Pytorch做深度学习任务的时候,会面临着自定义数据库来满足自己的任务需要.如我们要训练一个人脸关键点检测算法,提供的训练数据标注如下形式,存在CSV文件中: image_name,part_0_x,part_0_y,part_1_x,part_1_y,part_2_x, ... ,part_67_x,part_67_y 0805personali01.jpg,27,83,27,98, ... 8…
YOLOv5训练自定义数据 一.开始之前的准备工作 克隆 repo 并在Python>=3.6.0环境中安装requirements.txt,包括PyTorch>=1.7.模型和数据集会从最新的 YOLOv5版本中自动下载. git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 二.训练自定义数据 2.1 创建my_dataset.yaml COCO128是一个示例小教…