语言模型 Language Model (LM)】的更多相关文章

定义 什么是语言模型,通俗的讲就是从语法上判断一句话是否通顺.即判断如下的概率成立: \[p(\text{今天是周末})>p(\text{周末是今天}) \] 链式法则(chain rule) \[p(w_1,w_2,...,w_n)=p(w_1)p(w_2|w_1)p(w_3|w_1,w_2)...p(w_n|w_1,w_2,...,w_{n-1}) \] Markov assumption Markov assumption(first order) \[p(w_1,w_2,...,w_n)…
前一篇文章  用 CNTK 搞深度学习 (一) 入门    介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型. 递归神经网络 (RNN),用图形化的表示则是隐层连接到自己的神经网络(当然只是RNN中的一种): 不同于普通的神经网络,RNN假设样例之间并不是独立的.例如要预测“上”这个字的下一个字是什么,那么在“上”之前出现过的字就很重要,如果之前出现过“工作”,…
chain rule markov assumption 评估语言模型 平滑方法…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text Classificatio> 迁移学习在计算机视觉方面取得了很多成功,但是同样的方法应用在NLP领域却行不通.文本分类还是需要从零开始训练模型.本文的作者提出了一种针对NLP的有效的迁移学习方法,通用语言模型微调(ULMFiT)并介绍了用于微调模型的关键技巧. 越底层的特征越通用,越顶层的特征越特殊…
Traditional Language Model通常用于回答下述问题: How likely is a string of English words good English ? \(p_{LM}(\)the house is small\()\ge p_{LM}(\) small the is house\()\) \(p_{LM}(\)I am going home\()\ge p_{LM}(\)I am going house\()\) 生成该句子 \(W=w_1, w_2, w_3…
A Neural Probabilistic Language Model,这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖.在这里给出简要的译文 A Neural Probabilistic Language Model 一个神经概率语言模型 摘  要 统计语言模型的一个目标是学习一种语言的单词序列的联合概率函数.因为维数灾难,这是其本质难点:将被模型测试的单词序列很可能是与在训练中见过的所有单词的序列都不相同.传统的但非常成功的基于n-gram的方法通过将出现在训练集很短的重…
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子  ,其中  代表句子中的第  个词语,则语句 W 以该顺序出现的概率可以表示为: 其中 ,  $p(w_n|w_1^{n-1}) = p(w_n|w_1,w_2,...,w_{n-1})$  ,  $ p(w_n|w_1^{n-1})$ 即为 Language Model 的参数,.通常参数的求解用方法是 N-gram 模型,最大熵模型,HMM,CRF…
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:43 ttv56 阅读数 4552更多 分类专栏: 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014475479/article/details/81253506 本文发表于自然…
论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model transfer到text classiffication上 整个过程的训练技巧. 这些技巧的切入点是learning rate. 主要是三个: (1)discriminative fine-tuning (其中的discriminative 指 fine-tune each layer with d…