Flink实时计算topN热榜】的更多相关文章

TopN的常见应用场景,最热商品购买量,最高人气作者的阅读量等等. 1. 用到的知识点 Flink创建kafka数据源: 基于 EventTime 处理,如何指定 Watermark: Flink中的Window,滚动(tumbling)窗口与滑动(sliding)窗口: State状态的使用: ProcessFunction 实现 TopN 功能: 2. 案例介绍 通过用户访问日志,计算最近一段时间平台最活跃的几位用户topN. 创建kafka生产者,发送测试数据到kafka: 消费kafka…
本文首发于:Java大数据与数据仓库,Flink实时计算pv.uv的几种方法 实时统计pv.uv是再常见不过的大数据统计需求了,前面出过一篇SparkStreaming实时统计pv,uv的案例,这里用Flink实时计算pv,uv. 我们需要统计不同数据类型每天的pv,uv情况,并且有如下要求. 每秒钟要输出最新的统计结果: 程序永远跑着不会停,所以要定期清理内存里的过时数据: 收到的消息里的时间字段并不是按照顺序严格递增的,所以要有一定的容错机制: 访问uv并不一定每秒钟都会变化,重复输出对IO…
5月15日 阿里云DataWorks正式推出Stream Studio,正式为用户提供大数据的实时计算能力,同时标志着DataWorks成为离线.实时双计算领域的数据中台. 据介绍,Stream Studio基于阿里巴巴Flink实时计算引擎,支持DAG和SQL双模式开发流计算作业,并支持DAG与SQL互转:支持Function Studio在线开发UDF并一键发布:支持线上数据采集与本地调试:支持作业运维和智能诊断:极大地降低了流计算作业开发门槛,提高了开发效率.通过DataWorks已有的数…
1. 流程介绍 在上一篇文章中,我们已经把客户端的页面日志,启动日志,曝光日志分别发送到kafka对应的主题中.在本文中,我们将把业务数据也发送到对应的kafka主题中. 通过maxwell采集业务数据变化,相当于是ods数据,把采集的数据发送到kafka的topic(ods_base_db_m)中,然后flink从kafka消费数据,这个过程有维度数据,就放到hbase中,其他事实数据再发送给kafka作为dwd层.flink消费kafka数据可以做一些简单的ETL处理,比如过滤空值,长度限制…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
1. Flink Flink介绍: Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务. Flink的特性: Flink是个分布式流处理开源框架: 1>. 即使数据源是无序的或者晚到达的数据,也能保持结果准确…
Flink 学习 项目地址:https://github.com/zhisheng17/flink-learning/ 博客:http://www.54tianzhisheng.cn/tags/Flink/ 项目结构 ├── README.md ├── flink-learning-cep ├── flink-learning-common ├── flink-learning-connectors │   ├── flink-learning-connectors-activemq │   ├…
Flink对于流处理架构的意义十分重要,Kafka让消息具有了持久化的能力,而处理数据,甚至穿越时间的能力都要靠Flink来完成. 在Streaming-大数据的未来一文中我们知道,对于流式处理最重要的两件事,正确性,时间推理工具.而Flink对两者都有非常好的支持. Flink对于正确性的保证 对于连续的事件流数据,由于我们处理时可能有事件暂未到达,可能导致数据的正确性受到影响,现在采取的普遍做法的通过高延迟的离线计算保证正确性,但是也牺牲了低延迟. Flink的正确性体现在计算窗口的定义符合…
基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng.cn/2019/11/15/flink-in-action/ 专栏地址:https://gitbook.cn/gitchat/column/5dad4a20669f843a1a37cb4f 专栏亮点 全网首个使用最新版本 Flink 1.9 进行内容讲解(该版本更新很大,架构功能都有更新),领跑于目…
前言 在上一篇文章 你公司到底需不需要引入实时计算引擎? 中我讲解了日常中常见的实时需求,然后分析了这些需求的实现方式,接着对比了实时计算和离线计算.随着这些年大数据的飞速发展,也出现了不少计算的框架(Hadoop.Storm.Spark.Flink).在网上有人将大数据计算引擎的发展分为四个阶段. 第一代:Hadoop 承载的 MapReduce 第二代:支持 DAG(有向无环图)框架的计算引擎 Tez 和 Oozie,主要还是批处理任务 第三代:支持 Job 内部的 DAG(有向无环图),以…