高吞吐高并发Java NIO服务的架构(NIO架构及应用之一) http://maoyidao.iteye.com/blog/1149015   Java NIO成功的应用在了各种分布式.即时通信和中间件Java系统中.证明了基于NIO构建的通信基础,是一种高效,且扩展性很强的通信架构. 基于Reactor模式的高可扩展性架构这个架构的基本思路在“基于高可用性NIO服务器架构”(http://today.java.net/pub/a/today/2007/02/13/architecture-o…
使用spark.streaming.receiver.maxRate这个属性限制每秒的最大吞吐.官方文档如下: Maximum rate (number of records per second) at which each receiver will receive data. Effectively, each stream will consume at most this number of records per second. Setting this configuration…
高吞吐低延迟Java应用的垃圾回收优化 高性能应用构成了现代网络的支柱.LinkedIn有许多内部高吞吐量服务来满足每秒数千次的用户请求.要优化用户体验,低延迟地响应这些请求非常重要. 比如说,用户经常用到的一个功能是了解动态信息——不断更新的专业活动和内容的列表.动态信息在LinkedIn随处可见,包括公司页面,学校页面以及最重要的主页.基础动态信息数据平台为我们的经济图谱(会员,公司,群组等等)中各种实体的更新建立索引,它必须高吞吐低延迟地实现相关的更新. 图1 LinkedIn 动态信息…
核心概念 broker是kafka的节点,多台broker集群就是kafka topic消息分为多个topic partition分区,topic划分了多个partition分区,存在负载均衡策略 每个分区由一个个消息构成,消息在分区中被标识了递增的序号(表明了消息的偏移量) 每个分区各自维护一套偏移量 producer生产者,选择topic插入消息数据.根据kafka的分配策略,将消息插入某个分区队尾. consumer消费者,选择topic并根据offset偏移量来获取消息数据,记录当前读取…
Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1] 简介:雅虎发布的一份各种流处理引擎的基准测试,包括Storm, Flink, Spark Streaming 动机:贴近生产环境,使用Kafka和Redis进行数据获取和存储,设计并实现了一个真实的流处理基准. 结论:由于只是一篇基准测试报告,其最重要的就是结论.该论文结论如下:Storm, Flink延迟更小,更加接近于真正的"实时&q…
本篇从二个方面讲解: 高级特性: 1.Spark Streaming资源动态分配 2.Spark Streaming动态控制消费速率 原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论. 先讲理论,后面讨论. 为什么要动态资源分配和动态控制速率? Spark默认是先分配资源,然后计算:粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源: 不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值.低峰值考虑都有大量资源的浪费. 其实当年S…
分享一些Spark Streaming在使用中关于高吞吐和高可靠的优化. 目录 1. 高吞吐的优化方式 1.1 更改序列化的方式 1.2 修改Receiver接受到的数据的存储级别 1.3 广播配置变量 1.4 调大接收器的个数 1.5 设置合理的批处理间隔 1.6 多给点资源 1.7 内存比例管理 1.8 垃圾回收机制 1.9 使用合适的算子 1.10 反压机制 2. 高可靠的保障 2.1 可重放的上游 2.2 checkpoint 2.3 wal 2.4 对运行状况做监控 3. 参考 作为S…
CynosDB是腾讯云自研的新一代高性能高可用的企业级分布式云数据库.融合了传统数据库.云计算与新硬件的优势,100%兼容开源数据库,百万级QPS的高吞吐,不限存储,价格仅为商用数据库的1/10. CynosDB设计出发点: 随着云计算2.0时代的来临,在云计算技术和服务的支持下,越来越多的互联网企业业务规模快速扩大,它们对构建于云端的核心基础设施服务—数据库服务提出了更高的要求,如更高的性能.更好的稳定性和更低的成本等.与此同时,越来越多的零售.IoT和医疗等传统行业通过 “接入云” 完成数字…
Kafka是如何实现高吞吐率的 原创 2016-02-27 杜亦舒 性能与架构 Kafka是分布式消息系统,需要处理海量的消息,Kafka的设计是把所有的消息都写入速度低容量大的硬盘,以此来换取更强的存储能力,但实际上,使用硬盘并没有带来过多的性能损失kafka主要使用了以下几个方式实现了超高的吞吐率 顺序读写 kafka的消息是不断追加到文件中的,这个特性使kafka可以充分利用磁盘的顺序读写性能顺序读写不需要硬盘磁头的寻道时间,只需很少的扇区旋转时间,所以速度远快于随机读写Kafka官方给出…
简介 是dotNet core下基于Beetlex实现的一个高度精简化和高吞吐的HTTP API服务开源组件,它并没有完全实现HTTP SERVER的所有功能,而是只实现了在APP和WEB中提供数据服务最常用两个指令GET/SET,满足在应用实现JSON,PROTOBUF和MSGPACK等基于HTTP的数据交互功能,虽然是一个精简版本但针对SSL这方面的安全性还是支持.有牺牲就必然有收获,FastHttpApi作出这么大的精简必然在性能上有所收获取,经测试FastHttpApi在GET/POST…