数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂.为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察.然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,…
https://datawhalechina.github.io/pms50/#/chapter5/chapter5 计数图 (Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取决于该点中有多少点. 因此,点的大小越大,其周围的点的集中度越高. 导入所需要的库 import numpy as np # 导入pandas库 import pandas as pd # 导入matplotlib库 import matplotlib as mpl import matplotli…
偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https://datawhalechina.github.io/pms50/#/chapter14/chapter14 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl #…
关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表. 如果数据中有多个组,则可能需要以不同颜色可视化每个组. 在 matplotlib 中,您可以使用 plt.scatterplot() 方便地执行此操作. 导入需要的模块库 import numpy as np # 导入numpy库 import pandas as pd # 导入pan…
一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, palette=None,col_wrap=None, height=5, aspect=1,markers="o",     sharex=True,sharey=True, hue_order=None, col_order=None,row_order=None,legend=True…
偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种对差异进行可视化的灵活方式. https://datawhalechina.github.io/pms50/#/chapter13/chapter13 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入…
排序 (Ranking) 包点图 (Dot Plot) 包点图表传达了项目的排名顺序,并且由于它沿水平轴对齐,因此您可以更容易地看到点彼此之间的距离. https://datawhalechina.github.io/pms50/#/chapter17/chapter17 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 im…
矩阵图 https://datawhalechina.github.io/pms50/#/chapter9/chapter9 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 import matplotlib.pyplot as plt import seaborn as sns # 导入seaborn库 %matplotl…
https://datawhalechina.github.io/pms50/#/chapter7/chapter7 边缘箱形图 (Marginal Boxplot) 边缘箱图与边缘直方图具有相似的用途. 然而,箱线图有助于精确定位 X 和 Y 的中位数.第25和第75百分位数. 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib…
https://datawhalechina.github.io/pms50/#/chapter6/chapter6 边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y 轴变量的直方图. 这用于可视化 X 和 Y 之间的关系以及单独的 X 和 Y 的单变量分布. 这种图经常用于探索性数据分析(EDA). 导入所需要的库 # 导入numpy库 import numpy as np # 导入pandas库 import pandas as pd # 导入matplot…