[Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值的下标,用tf.equal()求出真实值和预测值相等的数量,也就是预测结果正确的数量,tf.argmax()和tf.equal()一般是结合着用. 具体讲解:correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 1.tf.e…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
In order to train our model, we need to define what it means for the model to be good. Well, actually, in machine learning we typically define what it means for a model to be bad. We call this the cost, or the loss, and it represents how far off our…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
在处理大规模数据时,数据无法全部载入内存,我们通常用两个选项 使用tfrecords 使用 tf.data.Dataset.from_generator() tfrecords的并行化使用前文已经有过介绍,这里不再赘述.如果我们不想生成tfrecord中间文件,那么生成器就是你所需要的. 本文主要记录针对 from_generator()的并行化方法,在 tf.data 中,并行化主要通过 map和 num_parallel_calls 实现,但是对一些场景,我们的generator()中有一些…
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下: 直觉上的经验: 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的; padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有…
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import tensorflow as tf #T1法 tf.name_scope() with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) #定义常量 var1 = tf.get_variab…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get_variable函数的作用从tf的注释里就可以看出来-- 'Gets an existing variable with this name or create a new one'. 与 tf.get_variable 函数相对的还有一个 tf.Variable 函数,两者的区别是: tf.Va…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, keep_dims=False) ⇒ mean, variance: 统计矩,mean 是一阶矩,variance 则是二阶中心矩 tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…
原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------------------------------------------------ 1.          tf.train.slice_input_producer  函数,一种模型数据的排队输入方法. tf.train.slice_input_producer( tensor_list, num…
tensorflow最大的问题就是大家都讲算法,不讲解用法,API文档又全是英文的,看起来好吃力,理解又不到位.当然给数学博士看的话,就没问题的. 最近看了一系列非常不错的文章,做一下记录: https://www.zhihu.com/people/hong-lan-99/activities https://github.com/lanhongvp https://blog.csdn.net/qq_37747262 https://blog.csdn.net/qq_37747262/artic…
tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名.而创建tf的文件名队列就需要使用到 tf.train.slice_input_producer 函数. tf…
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regularizerd()函数在tf 2.x版本中被弃用了. 两者都能用来L2正则化处理,但运算有一点不同. import tensorflow as tf sess = InteractiveSession() a = tf.constant([1, 2, 3], dtype=tf.float32) b =…
tf.matmul(a,b,transpose_a=False,transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None) 参数: a 一个类型为 float16, float32, float64, int32, complex64, complex128 且张量秩 > 1 的张量 b  一个类型跟张量a相同的张量 transpose_a 如果为真,…
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals that tf.layers.dropout is a wrapper for tf.nn.dropout. You want to use the dropout() function in tensorflow.contrib.layers, not the one in tensorflow.n…
用法: 1.tf.summary.scalar 用来显示标量信息,其格式为: tf.summary.scalar(tags, values, collections=None, name=None) 例如:tf.summary.scalar('mean', mean) 一般在画loss,accuary时会用到这个函数. 2.tf.summary.histogram 用来显示直方图信息,其格式为: tf.summary.histogram(tags, values, collections=Non…
1. tf.train.Saver() tf.train.Saver()是一个类,提供了变量.模型(也称图Graph)的保存和恢复模型方法. TensorFlow是通过构造Graph的方式进行深度学习,任何操作(如卷积.池化等)都需要operator,保存和恢复操作也不例外. 在tf.train.Saver()类初始化时,用于保存和恢复的save和restore operator会被加入Graph.所以,下列类初始化操作应在搭建Graph时完成. saver = tf.train.Saver()…
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
tf.trainable_variables()  返回的是 所有需要训练的变量列表 tf.all_variables() 返回的是 所有变量的列表 v = tf.Variable(0, name='v') v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(6, name='global_step', trainable=False) # 声明不是训…
原文地址: https://cloud.tencent.com/developer/article/1486441 ------------------------------------------------------ tf.cond( pred, true_fn=None, false_fn=None, name=None ) true_fn和false_fn都返回输出张量的列表.true_fn和false_fn必须具有相同的非零数和输出类型. 警告:在true_fn和false_fn之…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量…
MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softm…
学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一  MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数字的图片.在这个例子中就是通过机器学习训练一个模型,以识别图片中的数字. MNIST数据集来自 http://yann.lecun.com/exdb/mnist/ Tensorflow提供了一份python代码用于自动下载安装数据集.Tensorflow官方文档中的url打不开,在CSDN上找到了一…