poj 2661 Factstone Benchmark (Stirling数)】的更多相关文章

//题意是对于给定的x,求满足n! <= 2^(2^x)的最大的n//两边同取以二为底的对数,可得: lg2(n!) <= 2^x 1.   log2(n!) = log2(1) + log2(2) + .. + log2(n);一个循环即可 2.   Stirling #include <iostream> #include <string> #include<sstream> #include <cmath> #include <map…
/** 大意: 求m!用2进制表示有多少位 m! = 2^n 两边同时取对数 log2(m!) = n 即 log2(1) + log2(2)+log2(3)+log2(4)...+log2(m) = n 枚举即可 拓展: 可以用斯特林(Stirling)公式求解 斯特林(Stirling)公式: log(x) =====ln(x) **/ #include <iostream> #include <cmath> using namespace std; int main() {…
题意:N个编号为1~N的数,选任意个数分入任意个盒子内(盒子互不相同)的不同排列组合数. 解法:综合排列组合 Stirling(斯特林)数的知识进行DP.C[i][j]表示组合,从i个数中选j个数的方案数:S[i][j]表示Stirling数,i个数分成j份的方案数:P[i]表示P(i,i)全排列.分别从N个数中选i个数后,这i个数分成j份(j=1~i),进入j个盒子内,j个盒子有不同的排列.因此,对于N个数的公式为:ans=sum{C[n][i]*sum{S[i][j]*P[j]}}; P.S…
Factstone Benchmark Amtel has announced that it will release a 128-bit computer chip by 2010, a 256-bit computer by 2020, and so on, continuing its strategy of doubling the word-size every ten years. (Amtel released a 64-bit computer in 2000, a 32-bi…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排名相同的算作一组,那么最后的排名有1.2……n组,都有可能.那么对于有m组的,首先我们需要计算出n匹马分成m组有多少种分法,这就是第二类Stirling数,设为S(n,m),设a[m]表示m!,那么最后答案就是ans=sum(S(n,i)*a[i])(1<=i<=n). 第二类Stirling数:…
@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分作个环排列的方法数目.常用的表示方法有. 换个较生活化的说法,就是有个人分成组,每组内再按特定顺序围圈的分组方法的数目.例如: {A,B},{C,D} {A,C},{B,D} {A,D},{B,C} {A},{B,C,D} {A},{B,D,C} {B},{A,C,D} {B},{A,D,C} {C…
/** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那么在其左边还有f-1个能看见,在其右边还有b-1个,能看见..所以可以这样将题目转化: 将除最高楼之外的n-1个楼,分成f-1+b-1 组,在最高楼左边f-1 组,在其右边b-1组,那么分成f-1+b-1 组 就是第一类Stirling数.s[n-1][f-1+b-1]..左边f-1 组,在其右边b…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任意一扇门(不用钥匙),但你最多只能踹k次. 问你能将所有门打开的概率. 题解: · P(打开所有门) = 能打开所有门的钥匙放置情况数 / 钥匙放置的总情况数 · 钥匙放置的总情况数 = n! 那么考虑下能打开所有门的钥匙放置情况数... 由于每个房间里有且只有一把钥匙,所以如果将每个房间连向房间内…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看可以看到b栋楼,并且高的楼会挡住低的楼. 问你这些楼有多少种排列方法. 题解: 由于高的楼会挡住低的楼,所以这些楼首先会被划分成f+b-2个区域(除去中间最高的楼),并且左边有f-1个,右边有b-1个. 对于一个区域(假设在左边),这个区域由若干栋楼组成,并且最高的楼一定在最左边. 那么,由一个区域…
都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有关的题目会更新 n个乒乓球放到m个盒子里的方案数 1.球相同,盒子不同,不允许空 分成m段,n-1个空选m-1个放隔板 ,$\binom{n-1}{m-1}$ 2.球相同,盒子不同,允许空 $(1)$ 加入m个球变成不允许空 $(2)$ m-1个隔板和球放在一起,从中选m-1个做隔板 $C_{n+m…