Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic Segmentation,但是为了做好这个,作者将其分为三个子任务来做: 1) Differentiating instances. 实例区分 2) Estimating masks. 掩膜估计 3) Categorizing obje…
Concept Mask: Large-Scale Segmentation from Semantic Concepts 2018-08-21 11:16:07 Paper:https://arxiv.org/pdf/1808.06032.pdf 本文做了这么一件事:给定一张图片以及概念名词,输出其对应的分割结果,如下图所示: 具体来说,这个流程大致可以分为如下几个部分: 1. Embedding Network 来学习视觉特征和语义概念之间的对应关系:此时,我们可以得到一个粗糙的 atten…
Capsules for Object Segmentation 2018-04-16  21:49:14 Introduction: ----…
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: https://128.84.21.199/pdf/1807.09975.pdf 本文将 Graph Neural Network (GNN) 应用到 person re-ID 的任务中,用于 model 不同 prob-gallery 之间的关系,将该信息也用于 feature learning…
作者认为语义分割的两个挑战是分类和定位,而这两个挑战又是比较对立的.对于分类问题,模型需要有变形和旋转不变形,而对于定位问题,模型有需要对变形敏感. 提出的GCN遵循两个主要原则: 1.对定位问题,模型需要全卷积来获得定位信息,不能有全连接或是全局池化层. 2.对分类问题,需要有大的卷积核来连接特征图和每个像素的分类器 此外还添加了边界精细块(boundary refinement block)来代替传统的CRF后处理 全局卷积时没有用非线性激活函数,只有卷积层 1*k+k*1的效果比 k*k…
[论文信息] <Feedforward semantic segmentation with zoom-out features> CVPR 2015 superpixel-level,fully supervised,CNN [方法简单介绍] 首先对输入图像以superpixel为单位提取CNN特征(使用VGG16),然后把这些特征作为CNN classifier(使用imageNet)的输入,imageNet输出是每一个superpixel的class. [细节记录] feature 特征…
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract   Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed…
论文:Fully Convolutional Instance-aware Semantic Segmentation   目录 0.简介 1.Position-sensitive Score Map 2.Joint Mask Prediction and Classification 3.Networks architecture   0.简介 如果不懂 instance-sensitive score maps 或者说 position-sensitive score maps,建议先去看<…
In this post, I review the literature on semantic segmentation. Most research on semantic segmentation use natural/real world image datasets. Although the results are not directly applicable to medical images, I review these papers because research o…
创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 channel attention 来挑选出最具有识别力的特征 3.迁移学习来解决数据稀缺的问题,用了不同分辨率训练好的数据 目标数据集: landsat-8 和 ISPRS Vaihingen Challenge Dataset 语义分割现代技术: 1.global context(全局上下文信息):如…