文本去重之MinHash算法】的更多相关文章

1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页.它也可以应用于大规模聚类问题.   2.Jaccard index       在介绍MinHash之前,我们先介绍下Jaccard index.   Jaccard index是用来计算相似性,也就是距离的一种度量标准.假如有集合A.B,那么,     也就是说,集合A,B的Jaccard系数等于A,B中共同…
来源:http://my.oschina.net/pathenon/blog/65210 1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页.它也可以应用于大规模聚类问题.   2.Jaccard index       在介绍MinHash之前,我们先介绍下Jaccard index.       也就是说,集合A,B的Jaccard系数等于A,B中共同拥有的…
文本去重之SimHash算法 - pathenon的个人页面 - 开源中国社区 文本去重之SimHash算法…
给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).此外,假如,N个集合中只有少数几对集合相似,绝大多数集合都不相似,该方法在两两比较过程中"浪费了计算时间".所以,如果能找到一种算法,将大体上相似的集合聚到一起,缩小比对的范围,这样只用检测较少的集合对,就可以找到绝大多数相似的集合对,大幅度减少时间开销.虽然牺牲了一部分精度,但是如果能够将时间大幅度减少,这种算法还是可以接受的.接下来的内容…
在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHash是一种局部敏感hash,它也是Google公司进行海量网页去重使用的主要算法. 1. SimHash与传统hash函数的区别 传统的Hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上仅相当于伪随机数产生算法.传统…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHash存储和索引 7. 参考内容 在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)),本文介绍的SimHas…
SimHash是什么 SimHash是Google在2007年发表的论文<Detecting Near-Duplicates for Web Crawling >中提到的一种指纹生成算法或者叫指纹提取算法,被Google广泛应用在亿级的网页去重的Job中,作为locality sensitive hash(局部敏感哈希)的一种,其主要思想是降维,什么是降维? 举个通俗点的例子,一篇若干数量的文本内容,经过simhash降维后,可能仅仅得到一个长度为32或64位的二进制由01组成的字符串,这一点…
最近学习操作系统中,老师布置了一个作业,运用系统调用函数删除文件夹下两个重复文本类文件,Linux玩不动,于是就只能在Windows下进行了. 看了一下介绍Windows API的博客: 点击打开 基本就开始动手了. 主要利用的函数其实就那么几个: CreateFile      创建.打开文件ReadFile        读取文件内容DeleteFile      文件删除FindFirstFile   查找指定目录下的第一个文件FindNextFile   查找下一个文件GetFileAt…
MinHash是用于快速检测两个集合的相似性的方法.改方法由Andrei Broder(1997)发明,并最初用于搜索引擎AltaVista中来检测重复的网页的算法.它同样可以用于推荐系统和大规模文档聚类中. 我们先介绍Jaccard相似度量.对于两个集合A与B,Jaccard相似性系数可以定义为: 容易知道,Jaccard系数是0-1之间的值.当两个集合越接近,那么该值越接近1:反之跟接近0. 假设h是一个hash function,将A与B的元素映射成一个整数,定义:是集合S中具有最小哈希值…
1MinHash简介 传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法.传统hash算法产生的两个签名,如果相等,说明原始内容在一定概率下是相等的:如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大.从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息. M…
上一篇数组的去重说到,对于千次计算以上的去重基本上特别的吃力,这里就介绍一种方法,通过Collection集合对象来过滤重复. Option Explicit '//By: InkHin '// 参考:https://bbs.csdn.net/topics/350065116 '引用:Microsoft scriptiong Runtime '感谢 析弱大叔 qq: 1265382638 的指点. '// 2019-03-10 '// 测试 Collection 去重 百万条文本数据过滤 '//…
一.问题介绍 概率分布模型中,有时只含有可观测变量,如单硬币投掷模型,对于每个测试样例,硬币最终是正面还是反面是可以观测的.而有时还含有不可观测变量,如三硬币投掷模型.问题这样描述,首先投掷硬币A,如果是正面,则投掷硬币B,如果是反面,则投掷硬币C,最终只记录硬币B,C投掷的结果是正面还是反面,因此模型中硬币B,C的正反是可观测变量,而硬币A的正反则是不可观测变量.这里,用Y表示可观测变量,Z表示(隐变量)不可观测变量,Y和Z统称为完全数据,Y成为不完全数据.对于文本分类问题,未标记数据的自变量…
simhash进行文本查重http://blog.csdn.net/lgnlgn/article/details/6008498 Simhash算法原理和网页查重应用http://blog.jobbole.com/21928/…
简单来说,这个技巧相应的是例如以下一种场景 假设有文本例如以下 cccc aaaa bbbb dddd bbbb cccc aaaa 如今须要对它进行去重处理.这个非常easy,sort -u就能够搞定,可是假设我希望保持文本原有的顺序.比方这里有两个aaaa,我仅仅是希望去掉第二个aaaa,而第一个aaaa在bbbb的前面.去重后仍旧要在它前面.所以我期望的输出结果是 cccc aaaa bbbb dddd 当然,这个问题本身并不难.用C++或python写起来都非常easy,但所谓杀机焉用牛…
背景: 我遇到一个问题,要计算140万商品的杰卡德相似度.如果直接要直接两两计算的话,这计算量根本算不了,而且也没必要. 分析: 在这些商品中很多商品的相似度并不高,也就是说其中达到相似度阈值的商品只占这些商品组合的一小部分.针对这种情况,首先想到的是按照类别,或者商品品牌进行计算,只计算同类别或者同品牌下的相似品. 但是实际执行效果并不理想,分析原因可能有以下两点. 一.不同类别下的商品数目极不均衡,一些类别比较少的只有十几个,而一些类别下的商品数量极大,可能有十万以上. 二.如果按品牌划分则…
Simhash算法是Google应用在网页去重中的一个常用算法,在开始讲解Simhash之前,先了解——什么是网页去重?为什么要进行网页去重?如何进行网页去重,其基本框架是什么?   网页去重,顾名思义,就是过滤掉重复的网页.统计结果表明,近似重复网页的数量占网页总数量的比例较高,即互联网上有很多的页面内容是完全一样的或是相近的(这个不难理解,比如对于某一事件的新闻报道,很多是大同小异的).基于这一实际情况,所以要进行网页去重.   那么如何进行网页去重呢?这就用到了Simhash算法. 去重算…
sort [-fbMnrtuk] [file or stdin] 选项与参数: -f :忽略大小写的差异,例如 A 与 a 视为编码相同: -b :忽略最前面的空格符部分: -M :以月份的名字来排序,例如 JAN, DEC 等等的排序方法: -n :使用『纯数字』进行排序(默认是以文字型态来排序的): -r :反向排序: -u :就是 uniq ,相同的数据中,仅出现一行代表: -t :分隔符,默认是用 [tab] 键来分隔: -k :以那个区间 (field) 来进行排序的意思 sort -…
BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document, regardless of the inter-relationship between the query terms within a document (e.g., their relative proximity). It is not a…
对于awk '!a[$3]++',需要了解3个知识点 1.awk数组知识,不说了 2.awk的基本命令格式 awk 'pattern{action}'     省略action时,默认action是{print},如awk '1'就是awk '1{print}' 3.var++的形式:先读取var变量值,再对var值+1 以数据 1 2 3 1 2 3 1 2 4 1 2 5 为例,对于awk '!a[$3]++' awk处理第一行时: 先读取a[$3]值再自增,a[$3]即a[3]值为空(0)…
simhash算法:海量千万级的数据去重 simhash算法及原理参考: 简单易懂讲解simhash算法 hash 哈希:https://blog.csdn.net/le_le_name/article/details/51615931 simhash算法及原理简介:https://blog.csdn.net/lengye7/article/details/79789206 使用SimHash进行海量文本去重:https://www.cnblogs.com/maybe2030/p/5203186…
前面我们了解了一些常用的排序算法,那么这篇文章我们来看看搜索算法的一些简单实现,我们先来介绍一个我们在实际工作中一定用到过的搜索算法--顺序搜索. 1.顺序搜索 其实顺序搜索十分简单,我们还是以第一篇文章写好的架子作为基础,在其中加入顺序搜索的方法: //顺序搜索 this.sequentialSearch = function(item) { for(var i = 0; i < array.length; i++) { if(item === array[i]) { return i; };…
前面我们了解了一些常用的排序算法,那么这篇文章我们来看看搜索算法的一些简单实现,我们先来介绍一个我们在实际工作中一定用到过的搜索算法——顺序搜索. 1.顺序搜索 其实顺序搜索十分简单,我们还是以第一篇文章写好的架子作为基础,在其中加入顺序搜索的方法: //顺序搜索 this.sequentialSearch = function(item) { for(var i = 0; i < array.length; i++) { if(item === array[i]) { return i; };…
记得以前有人问过我,网页去重算法有哪些,我不假思索的说出了余弦向量相似度匹配,但如果是数十亿级别的网页去重呢?这下糟糕了,因为每两个网页都需要计算一次向量内积,查重效率太低了!我当时就想:论查找效率肯定是要考虑hash算法,相同字符串的hashcode肯定相同,不同字符串的hashcode却是大不相同,这也不符合要求啊,会不会存在一种算法能够使相似字符串的code值也相同或相似呢,于是就找到了Google的网页去重算法-SimHash.我们在使用SimHash算法前需要根据文档量级选择SimHa…
外部排序算法相关:主要用到归并排序,堆排序,桶排序,重点是先分成不同的块,然后从每个块中找到最小值写入磁盘,分析过程可以看看http://blog.csdn.net/jeason29/article/details/50474772 hash值算法 1.题目描述 给定a.b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a.b文件共同的url? 2.思考过程 (1)首先我们最常想到的方法是读取文件a,建立哈希表(为什么要建立hash表?因为方便后面的查找),然后再…
[TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度量方式,我们便可以利用划分法的K-means.基于密度的DBSCAN或者是基于模型的概率方法进行文本之间的聚类分析:另一方面,我们也可以利用文本之间的相似性对大规模语料进行去重预处理,或者找寻某一实体名称的相关名称(模糊匹配).而衡量两个字符串的相似性有很多种方法,如最直接的利用hashcode,以…
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适…
搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计,数据分析]这些所谓的脏活累活,这样的推荐系统才会有救. 求教GitHub的使用. 简单不等于傻逼. 我为什么说累:我又是一个习惯在聊天中思考前因后果的人,所以整个大脑高负荷运转.不过这样真不好,学习学成傻逼了. 研一的最大收获是让我明白原来以前仰慕的各种国家自然基金项目,原来都是可以浑水摸鱼忽悠过去…
simhash是google用来处理海量文本去重的算法. google出品,你懂的. simhash最牛逼的一点就是将一个文档,最后转换成一个64位的字节,暂且称之为特征字,然后判断重复只需要判断他们的特征字的距离是不是<n(根据经验这个n一般取值为3),就可以判断两个文档是否相似. 原理 simhash值的生成图解如下: 大概花三分钟看懂这个图就差不多怎么实现这个simhash算法了.特别简单.谷歌出品嘛,简单实用. 算法过程大概如下: 将Doc进行关键词抽取(其中包括分词和计算权重),抽取出…