PreferenceFragment 使用 小结】的更多相关文章

Perference也就是我们常说的偏好设置,首选项设置,能够自己主动保存一些数据,比如我们在上一次使用的时候的一些内容,则在下一次启动后依旧生效,而不须要再进行配置.当用户改变设置时,系统就会更新SharedPreference文件里相应的值.perference使用键值对的方式来处理,在android3.0之前,我们一般去继承Preference这个基类,去给用户呈现一个能够设置的界面,当中的layout须要自己编写,而在3.0之后,使用的是碎片技术的首选项配置方法,即 使用Preferen…
一直想写个总结,不过实在太忙了,所以一直拖啊拖啊,拖到现在,不过也好,有了这段时间的沉淀,发现自己又有了小小的进步.哈哈...... 原想框架开发的相关开发步骤.文档.代码.功能.部署等都简单的讲过了,就此了结本系列文章,经过这段日子的深入学习,发现本系列文章讲的还是太肤浅了,很多东西都没有讲到,也没有说明白.所以过段时间空闲些了,会继续从理论上来讲解怎么去设计一个框架(也算是给自己定个目标,加加压力),有了前面的代码了解,再学习理论相信大家也更容易接受了. 小结 学习如逆水行舟,不进则退,当能…
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [Python NLP]Python 自然语言处理工具小结(2) [Python NLP]Python NLTK 走进大秦帝国(3) [Python NLP]Python NLTK获取文本语料和词汇资源(4) [Python NLP]Python NLTK处理原始文本(5) 1 Python 的几个自…
上一篇文章整理了Base64算法的相关知识,严格来说,Base64只能算是一种编码方式而非加密算法,这一篇要说的MD5,其实也不算是加密算法,而是一种哈希算法,即将目标文本转化为固定长度,不可逆的字符串(消息摘要). 简单了解 MD5(Message Digest Algorithm 5),翻译过来是消息摘要算法第五版,按照惯例,我们推理可能也有MD2,MD3这样名字的历史版本.. 即使完全不了解这个算法的原理,我们也可以从命名中看出一些眉道,所谓摘要,就是一个简短的概括,像我写过的毕业论文,上…
iOS--->微信支付小结 说起支付,除了支付宝支付之外,微信支付也是我们三方支付中最重要的方式之一,承接上面总结的支付宝,接下来把微信支付也总结了一下 ***那么首先还是由公司去创建并申请使用微信支付所需的信息 1.接下来就是微信支付的集成步骤了,参考着开发文档来,非常简单的 下载SDK,项目中导入所需的文件WxPay文件夹中,注意其中的.a文件容易丢失 2.根据文档对其中支持的非arc进行设置 3.设置微信支付的URL types 4.接下来就是代码内部的事情了,做支付我们知道首先需要在ap…
一:编辑被键盘遮挡的问题 参考自:http://blog.csdn.net/windkisshao/article/details/21398521 1.自定方法 ,用于移动视图 -(void)moveInputBarWithKeyboardHeight:(float)_CGRectHeight withDuration:(NSTimeInterval)_NSTimeInterval; 2.注册监听 NSNotificationCenter *defaultCenter = [NSNotific…
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是选择平均…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multipl…
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boosting系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 1. 回顾boosting算法的基本原理 在集成学习原理小结中,我们已经讲到了boosting算法系列的基本思想,如下图: 从图中…
前言 总括:详细讲述Cookie,LocalStorge,SesstionStorge的区别和用法. 人生如画,岁月如歌. 原文博客地址:Javascript本地存储小结 知乎专栏&&简书专题:前端进击者(知乎)&&前端进击者(简书) 1. 各种存储方案的简单对比 Cookies:浏览器均支持,容量为4KB UserData:仅IE支持,容量为64KB Flash:100KB,非HTML原生,需要插件支持 Google Gears SQLite :需要插件支持,容量无限制…
写在前面 HTML5出来已经很久了,然而由于本人不是专业搞前端的,只知道有这个东西,具体概念有点模糊(其实就是一系列标准规范啦):因此去年(2015.11.09),专门对HTML5做了个简单的小结,今天正好看到,整理一下放到我的博客,以免丢失.有错误请指正. 另外,转载请注明链接http://www.cnblogs.com/chenpi/p/5578011.html,虽然内容比较简单,但也是花了不少时间整理的. 什么是HTML5 简单地说,HTML5就是一系列用来制定现代富Web内容的相关技术的…
在segmentfault上读的一篇学习JavaScript路线的文章,做个小结. 一.简介.数据类型.表达式和操作符 (1)<JavaScript权威指南>前言1-2章&<JavaScript高级程序设计>前言1-2章. (2)权威3-4章&高设3-4章. (3)权威5章. 二.对象.数组.函数.DOM (1)权威6章&高设6章(“理解对象”部分). (2)权威7-8章&高设5,7章. (3)权威13,15,16章&高设8,9,10,11,…
接触到flex一个多月了,今天做一个学习小结.如果有知识错误或者意见不同的地方.欢迎交流指教. 画外音:先说一下,我是怎么接触到flex布局的.对于正在学习的童鞋们,我建议大家没事可以逛逛网站,看看人家的源代码.至于怎么看?从浏览器已经生成的静态代码看(当然如果该公司的代码在github开源了,那就去github中看吧,也可以fork到自己的托管空间下创建派生自己改着玩.),或者去网站上下一些自己感兴趣的或者差不多效果的代码看.多看demo,多加学习. 一个月前看到国美金融美易理财的界面,网址:…
python 学习小结 python 简明教程 1.python 文件 #!/etc/bin/python #coding=utf-8 2.main()函数 if __name__ == '__main__': 3.物理行与逻辑行; 下面是一个在多个物理行中写一个逻辑行的例子.它被称为明确的行连接. s = 'This is a string. \ This continues the string.' print s 它的输出: This is a string. This continues…
项目中经常有遇到需求半透明的情况,如图片.文字.容器.背景等等,每次都要去翻以前的项目,不甚其烦.现在一次性做个小结,方便自己查阅,也同时分享给大家: 一. 元素容器透明 .div{ opacity: 0.5; /* Firefox.Chorme.Opera等主流浏览器识别 */ filter:alpha(opacity=50); /* IE6及以上IE浏览器识别 */ } 说明: 1. opacity:* 取值0-1之间,由全透明向不透明递增,超过1之后默认不透明: 2. filter:alp…
指针 -->指针变量 类型名 *变量名 int *point1; char *point2; 注意:*p可以直接使用,它代表指针p指向的变量,*p可以当做被指向的变量使用!~~~~ 一个变量的地址 成为这个变量的指针. -->数组元素的指针 定义:数组元素的地址 定义数组 一维数组 ] = {,,,}; 二维数组 ] = { {'a','b','c'}, {'k','c','s''}, {'j','w','z'} }; 数组元素的指针 ];//指针变量s,指向数组p的0号元素,作用将p数组的首…
MySQL优化的第一步应该做的就是排查问题,找出瓶颈,而通常情况下的瓶颈和问题都需要通过观察MySQL的运行情况来进行分析,而对于大多数的程序员来说,最容易发现并解决的问题就是MySQL的慢查询或者没有利用索引的查询,所以这里主要给大家介绍如何利用官方的mysqldumpslow工具方便的查看这些信息. 打开MySQL的慢查询: slow_query_log slow_query_log_file = /var/log/mysql/mysql-slow.log long_query_time l…
前言 算法这个东西其实在开发中很少用到,特别是web开发中,但是算法也很重要,因为任何的程序,任何的软件,都是由很多的算法和数据结构组成的.但是这不意味着算法对于每个软件设计人员的实际工作都是很重要的.每个项目特点和需求特殊也导致算法运用场景上不同.但是个人觉得算法运用的好的话会给自己在程序设计的时候提供比较好的思路.下面就对一些排序算法小结一下,就当做自己的一个笔记吧. 插入排序  1.简介 插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序…
我们都知道让元素垂直居中有一种简单的方法:给需要居中的元素用一个父级包起来,并给它设置样式:display:table:同时给这个父级设置好高度:再给需要居中的元素一个display:table-cell:vertical-align:middle;这样被设置的元素就可以做到垂直居中,实现代码如下: <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8">…
前言:最近写了一个bat用于快速编译swf至目标目录,想利用FINDSTR命令通过匹配目标目录名称,匹配数量大概600多个,发现匹配耗时比较久,大概花费10余秒,因此还是放弃字符匹配,乖乖拼出全称来定位目录.感觉bat的运行效率是比较低的. 稍加搜索,看到一些帖子也印证了我的想法.bat不适合做太复杂的事.还是分享下FINDSTR命令的用法. 批处理运行效率讨论帖汇总   FINDSTR正则表达式小结   什么是正则表达式?百度 http://baike.baidu.com/view/94238…
本文转载自Silhouette的文章,原文地址:http://www.dreamingfish123.info/?p=1102 Hadoop排序工具用法小结 发表于 2014 年 8 月 25 日 由 fish Hadoop用于对key的排序和分桶的设置选项比较多和复杂,目前在公司内主要以KeyFieldBasePartitioner和KeyFieldBaseComparator被hadoop用户广泛使用. 基本概念: Partition:分桶过程,用户输出的key经过partition分发到不…
DevExpress控件的GridControl控件小结 (由于开始使用DevExpress控件了,所以要点滴的记录一下) 1.DevExpress控件组中的GridControl控件不能使横向滚动条有效.现象:控件中的好多列都挤在一起,列宽都变的很小,根本无法正常浏览控件单元格中的内容. 解决: gridView1.OptionsView.ColumnAutoWidth属性是true,即各列的宽度自动调整,你把它设成false,就会出现了. 2.使单元格不可编辑. gridcontrol --…
接上篇文章接Gulp使用小结(一) 内容如下: 首先,偶在gulp-demos上已经提交了个较通用的栗子...俺琢磨半天,原准备分阶段搞些 Gulp 套路,但是写完介个栗子之后,觉得已经能覆盖绝大多数的场景了(懵逼脸.gif).算哒,当偶偷懒就酱吧,一个套路打天下:) 然后,聊聊这篇值得思考的文章<我为何放弃Gulp与Grunt,转投npm scripts> 上 中 下, 英文原地址奉上:<Why I Left Gulp and Grunt for npm Scripts> 最后,…
之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learn SVM算法库的使用做一个小结.scikit-learn SVM算法库封装了libsvm 和 liblinear 的实现,仅仅重写了算法了接口部分. 1. scikit-learn SVM算法库使用概述 scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类.另一类是回归算法库,包括SVR, NuSVR,和Linea…
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单.相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握.在scikit-learn中,一共有3个朴素贝叶斯的分类算法类.分别是Gau…
在K近邻法(KNN)原理小结这篇文章,我们讨论了KNN的原理和优缺点,这里我们就从实践出发,对scikit-learn 中KNN相关的类库使用做一个小结.主要关注于类库调参时的一个经验总结. 1. scikit-learn 中KNN相关的类库概述 在scikit-learn 中,与近邻法这一大类相关的类库都在sklearn.neighbors包之中.KNN分类树的类是KNeighborsClassifier,KNN回归树的类是KNeighborsRegressor.除此之外,还有KNN的扩展,即…