Spark Sreaming与MLlib机器学习】的更多相关文章

Spark Sreaming与MLlib机器学习 本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Stream…
本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Streaming可以很好的解决上述类似的问题. 了解Spar…
前言 Spark MLlib是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器.…
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习…
一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习问…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
  http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 MLlib是 Spark框架使用的核心.本书是一本细致介绍 Spark MLlib程序设计的图书,入门简单,示例丰富. 本书分为 12章,从 Spark基础安装和配置开始,依次介绍 MLlib程序设计基础.MLlib的数据对象构建.MLlib中 RDD使用介绍,各种分类.聚…
决策树模型,适用于分类.回归. 简单地理解决策树呢,就是通过不断地设置新的条件标准对当前的数据进行划分,最后以实现把原始的杂乱的所有数据分类. 就像下面这个图,如果输入是一大堆追求一个妹子的汉子,妹子内心里有个筛子,最后菇凉也就决定了和谁约(举栗而已哦,不代表什么-大家理解原理重要--) 训练数据: 0,32 帅 收入中等 不是公务员 1,25 帅 收入中等 是公务员 0,25 帅 收入中等 不是公务员 1,29 帅 收入中等 是公务员 1,24 帅 收入高 不是公务员 0,31 帅 收入高 不…
1 概念 2 安装 3 RDD RDD包含两种基本的类型:Transformation和Action.RDD的执行是延迟执行,只有Action算子才会触发任务的执行. 宽依赖和窄依赖用于切分任务,如果都是窄依赖,那么就可以最大化的利用并行. 常用操作: cache 缓存 cartesian 笛卡尔积 coalesce 重分区 countByValue 分组统计 distinct 去除重复 filter 过滤 flatMap map groupBy 分组 keyBy 增加key reduce 拼接…
贝叶斯法则   机器学习的任务:在给定训练数据A时,确定假设空间B中的最佳假设.   最佳假设:一种方法是把它定义为在给定数据A以及B中不同假设的先验概率的有关知识下的最可能假设   贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率.给定假设下观察到不同数据的概率以及观察到的数据本身 先验概率和后验概率   用P(A)表示在没有训练数据前假设A拥有的初始概率.P(A)被称为A的先验概率.  先验概率反映了关于A是一正确假设的机会的背景知识  如果没有这一先验知识,可以简单地将每一候选假…