目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题  对偶性是优化理论中一个重要的部分,带约束的优化问题是机器学习中经常遇到的问题,这类问题都可以用如下形式表达 \[ \begin{aligned} min \;\; &f(x) \\ s.t.\;\; & g_i(x) \le 0 ,\;\; i=1,\cdots,…
在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时间去查阅资料,因为数学较差的原因,理解起来相当慢,不过探索的乐趣也就在于不断的打破瓶颈向前,OK继续.上述的问题等价于: 而后我们引入广义拉格朗日函数,利用拉格朗日对偶性来求解此问题.首先明确一下,我们做这些工作的目的是,消去约束条件,为了好求解问题.广义拉格朗日函数为: 上式分为两部分,拉格朗日前辈的思路是…
[转载请注明出处]http://www.cnblogs.com/jerrylead 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数. 然后分别对w和求偏导,使得偏导数等于0,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变…
拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题:              目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为              L是等式约束的个数. ,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们…
第一步.初步了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向量机本身便是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中. 支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的. 通俗来…
      学习策略:间隔最大化(解凸二次规划的问题) 对于上图,如果采用感知机,可以找到无数条分界线区分正负类,SVM目的就是找到一个margin 最大的 classifier,因此这个分界线(超平面)一定是固定. 假设a是正类,b是负类,那么a和b直接的距离就是ob-oa在直线l上的映射. 我们假设a,b所在的那条直线的方程为:      a:   WTX+b=1      b:   WTX+b=1        那么根据两条平行线之间的距离公式,我们可以算出,平行线之间的间隔为:2/||w…
支持向量机(Support Vector Machine,SVM)是效果最好的分类算法之中的一个. 一.线性分类器: 一个线性分类器就是要在n维的数据空间中找到一个超平面,通过这个超平面能够把两类数据分隔开来. 一个超平面.在二维空间中的样例就是一条直线. 首先给出一个很很easy的分类问题(线性可分).我们要用一条直线,将下图中黑色的点和白色的点分开,很显然.图上的这条直线就是我们要求的直线之中的一个(能够有无数条这种直线)     假如说,我们令黑色的点 = +1, 白色的点 = -1,直线…
  支持向量机是Vapnik等人于1995年首先提出的,它是基于VC维理论和结构风险最小化原则的学习机器.它在解决小样本.非线性和高维模式识别问题中表现出许多特有的优势,并在一定程度上克服了"维数灾难"和"过学习"等传统困难,再加上它具有坚实的理论基础,简单明了的数学模型,使得支持向量机从提出以来受到广泛的关注,并取得了长足的发展 .支持向量机(Support Vector Machine, SVM)本身是一个二元分类算法,是对感知机算法模型的一种扩展,现在的 SV…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知识,需要慢慢地理解.我也是通过看别人的博客理解SVM的. 推荐大家看看on2way的SVM系列: 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系列(二):SVM的理论基础 解密SVM系列(三):SMO算法原理与实战求解 解密SVM系列(四):SVM非线性分类原理实验 基本概念 SVM -…
转自:七月算法社区http://ask.julyedu.com/question/276 咨询:带约束优化问题 拉格朗日 对偶问题 KKT条件 关注 | 22 ... 咨询下各位,在机器学习相关内容中,每次看到带约束优化问题,总是看到先用拉格朗日函数变成无约束问题,然后转成求拉格朗日对偶问题,然后有凸函数假设,满足KKT条件时原问题最优解和对偶问题最优解等价. 每次看到这个,总不是很理解为什么要这么做?为什么首先转为无约束问题(这个相对好理解一点,因为容易处理)为什么拉格朗日函数无约束问题要转变…