MapReduce原理深入理解(一)】的更多相关文章

1.MapReduce概念 1)MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题. 2)MapReduce是分布式运行的,由两个阶段组成:Map和Reduce,Map阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据.Reduce阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据[在这先把reduce理解为一个单独的聚合程序即可]. 3)MapReduce框架都有默认实现,用户只需要覆盖map()和reduce(…
1.Mapreduce操作不需要reduce阶段 1 import org.apache.hadoop.conf.Configuration; 2 import org.apache.hadoop.fs.FileSystem; 3 import org.apache.hadoop.fs.Path; 4 import org.apache.hadoop.io.LongWritable; 5 import org.apache.hadoop.io.NullWritable; 6 import org…
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计算模型 MapReduce 通俗解释 图书馆要清点图书数量,有10个书架,管理员为了加快统计速度,找来了10个同学,每个同学负责统计一个书架的图书数量张同学 统计 书架1王同学 统计 书架2刘同学 统计 书架3......过了一会儿,10个同学陆续到管理员这汇报自己的统计数字,管理员把各个数字加起来…
原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 摘要 关键词: MapReduce; 实现平台; Hadoop; Phoenix; Disco; Mars Analysis of MapReduce Principle and Its Main Implementation Platforms Kang Liyun, Wang Xiaoyue,…
MapReduce 原理与 Python 实践 1. MapReduce 原理 以下是个人在MongoDB和Redis实际应用中总结的Map-Reduce的理解 Hadoop 的 MapReduce 是基于 Google - MapReduce: Simplified Data Processing on Large Clusters的一种实现.对 MapReduce 的基本介绍如下: MapReduce is a programming model and an associated impl…
这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 package examples; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Da…
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由google公司研究提出的一种免息nag大规模数据处理的并行计算模型和方法.是hadoop面向大数据并行处理的计算模型.框架和平台 * Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个…
Atitit 泛型原理与理解attilax总结 1. 泛型历史11.1.1. 由来11.2. 为什么需要泛型,类型安全21.3. 7.泛型的好处22. 泛型的机制编辑22.1.1. 机制32.1.2. 编译机制32.2. 参考31.泛型历史泛型编程(Generic Programming)最初提出时的动机很简单直接:发明一种语言机制,能够帮助实现一个通用的标准容器库.所谓通用的标准容器库,就是要能够做到,比如用一个List类存放所有可能类型的对象这样的事:泛型编程让你编写完全一般化并可重复使用的…
Hapoop原理 Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,其最核心的设计包括:MapReduce和HDFS.基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序,并将其运行于由成百上千个结点组成的大规模计算机集群上. 基于MapReduce计算模型编写分布式并行程序相对简单,程序员的主要工作就是设计实现Map和Reduce类,其它的并行编程中的种种复杂问题,如分布式存储,工作调度,负载平衡,容错处理,网络通信等,均由 MapReduce框架和HDFS文件系…
MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数实现分布式计算. 这两个函数的形参是key,value对,表示函数的输入信息. MP执行流程 客户端提交给jobtracker,jobtracker分配给tasktracker. trasktracker会对任务进行mapper和reducer操作. MapReduce原理 一个map输入…