[题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此我们需要维护区间最大值,以及最大值的位置. 如果当前$1$与$n$已经连通,就更新$ans$,当前从$1~n$的代价是$ai+val[querymax(1,n)]$: 为了方便处理,我们可以把边开成点,即加边的时候多开一个表示这条边的点,在上面记录边权等信息. #include<cstdio> #…
本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 那么这个对于这个题来说,我们考虑,可以先按照a从小到大排序,然后顺次加入每条边,这样每次加入的边一定是有可能会更新到\(ans\)的. 对于一条边\(u->v\),如果\(u\)和\(v\)不在一个联通块里面的话,那么就直接连上这个边,然后尝试更新答案 如果在同一个联通块里面呢,我们就判断\(u\)…
魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于枚举了每一个\(a\)作为最大的\(a\),然后求出了其对应的最小\(b\)的最大值. 代码如下 #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 300005; int fa[N],…
\(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,-,n,边标号为 1,2,3,-,m.初始时小 E 同学在 1 号节点,隐士则住在 n 号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击.幸运的是,在 1 号节点住着两种守护精灵:A 型守护精…
P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,-,n,边标号为 1,2,3,-,m.初始时小 E 同学在 1 号节点,隐士则住在 n 号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击.幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与…
题面 一开始看到这道题虽然知道是跟LCT维护最小生成树相关的但是没有可以的去想. 感觉可以先二分一下总的精灵数,但是感觉不太好做. 又感觉可以只二分一种精灵,用最小生成树算另一种精灵,但是和似乎不单调. 然后就可以自然地想到先把边按\(a\)从小到大加入,用LCT维护最小生成树,直接更新答案即可. #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #define RE…
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…,m.初始时小 E 同学在 1 号节点,隐士则住在 n 号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击.幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与 B 型守护精灵.小 E 可以借助它们的力…
在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字从小到大枚举边,维护另一个关键字的最小生成树,这样的思路真是太巧妙啦.(然而没有题解的滋养我什么也干不了) 只是关于写法上面,我又有些和Dalao们不一样的地方(因为是自己乱写的). link和cut好像脱离了传统意义,本蒟蒻用了link(x)表示将编号为x的边加入用LCT维护的最小生成树,cut(x)反之…
在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字从小到大枚举边,维护另一个关键字的最小生成树,这样的思路真是太巧妙啦.(然而没有题解的滋养我什么也干不了) 只是关于写法上面,我又有些和Dalao们不一样的地方(因为是自己乱写的). link和cut好像脱离了传统意义,本蒟蒻用了link(x)表示将编号为x的边加入用LCT维护的最小生成树,cut(x)反之…
这道题看题意是在求一个二维最小瓶颈路,唯一可行方案就是枚举一维在这一维满足的条件下使另一维最小,那么我们就把第一维排序利用A小的边在A大的情况下仍成立来动态加边维护最小生成树. #include <cstdio> #include <algorithm> namespace Pre{ inline void read(int &sum){ register char ch=getchar(); ;ch<';ch=getchar()); )+(sum<<)+…