XLearning - 深度学习调度平台】的更多相关文章

XLearning - 深度学习调度平台 软件简介 XLearning **** 是奇虎 360 开源的一款支持多种机器学习.深度学习框架调度系统.基于 Hadoop Yarn 完成了对TensorFlow.MXNet.Caffe.Theano.PyTorch.Keras.XGBoost 等常用框架的集成,同时具备良好的扩展性和兼容性. 架构设计 XLearning 系统包括三种组件: Client :XLearning 客户端,负责启动作业及获取作业执行状态: ApplicationMaste…
Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 1)本文是关于Minerva简介的一篇译文.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人刚接触深度学习方向,专业术语了解甚少,斗胆翻译了这篇文…
自己的电脑跑cnn, rnn太慢? 还在为自己电脑没有好的gpu而苦恼? 程序一跑一俩天连睡觉也要开着电脑训练? 如果你有这些烦恼何不考虑考虑使用谷歌的云平台呢?注册之后即送300美元噢-下面我就来介绍一下谷歌云平台的使用. 1 配置谷歌云平台项目(GCP Project) https://console.cloud.google.com/cloud-resource-manager 按照谷歌的向导你可以一步一步创建一个新的项目.这个项目就是你本地的项目并想放在云上跑的东西. 点击创建项目,输入…
本文适合有 Java 基础的人群 作者:DJL-Lanking HelloGitHub 推出的<讲解开源项目>系列.有幸邀请到了亚马逊 + Apache 的工程师:Lanking( https://github.com/lanking520 ),为我们讲解 DJL -- 完全由 Java 构建的深度学习平台. 介绍 许多年以来,一直都没有为 Java 量身定制的深度学习开发平台.用户必须要进行繁杂的项目配置,构建 class 才能最终打造出属于 Java 的深度学习应用.在那之后,依旧要面临着…
矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验.在性价比上,我们以 2080Ti 单卡为例,36 小时折扣后的价格才 55 元,每小时单价仅 1.52 元,属于全网最低价.用户体验上,平台为用户提供了公开数据集.案例.预装环境.高速网盘等配套设施和数据,让用户可以专注于深度学习研究. 高性价比 矩池云拥有很高的性价比,其的计费方式主要分为按时租与按周/月租.按时租用采用的是分钟级的实时计费模式,满足了用完即走的短时需要:按周/月租会以一个优惠的价格出租,可以满足长期租用的…
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 TensorFlow 编写的运算可以几乎不用更改,就能被运行在多种异质系统上,从移动设备(例如手机和平板)到拥有几百台的机器和几千个 GPU 之类运算设备的大规模分布式系统. TensorFlow 降低了深度学习的使用门槛,让从业人员能够更简单和方便地开发新产品.作为Google 发布的“平台级产品”,很多…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
  0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性和速度 0x01 开始学习 1.Tensors Tensors(张量)类似于numpy的ndarrays,不过Tensors还可以运行于GPU上以提升计算速度. from __future__ import print_function import torch 创建一个5x3且未初始化的矩阵: x…
如何用前端页面原型生成对应的代码一直是我们关注的问题,本文作者根据 pix2code 等论文构建了一个强大的前端代码生成模型,并详细解释了如何利用 LSTM 与 CNN 将设计原型编写为 HTML 和 CSS 网站. 项目链接:https://github.com/emilwallner/Screenshot-to-code-in-Keras 在未来三年内,深度学习将改变前端开发.它将会加快原型设计速度,拉低开发软件的门槛. Tony Beltramelli 在去年发布了论文<pix2code:…
推断(Inference),就是深度学习把从训练中学习到的能力应用到工作中去. 精心调整权值之后的神经网络基本上就是个笨重.巨大的数据库.为了充分利用训练的结果,完成现实社会的任务,我们需要的是一个能够保留学习到的能力,还能迅速应用到前所未见的数据上的,响应迅速的系统.这就是推断,根据真实世界中的少量数据,迅速地提供正确的答案. 这可是计算机科学的全新领域.现在主要有两种方法来优化庞大笨拙的神经网络,以实现高速低延迟的应用. 第一个方法,是查找神经网络中经过训练后并没有用到.也就是说尚未激活的部…
简介 每过一段时间,就会有一个深度学习库被开发,这些深度学习库往往可以改变深度学习领域的景观.Pytorch就是这样一个库. 在过去的一段时间里,我研究了Pytorch,我惊叹于它的操作简易.Pytorch是我迄今为止所使用的深度学习库中最灵活的,最轻松的. 在本文中,我们将以实践的方式来探索Pytorch,包括基础知识与案例研究.我们会使用numpy和Pytorch分别从头开始构建神经网络,看看他们的相似之处. 提示:本文假设你已经对深度学习有一定的了解.如果你想深入学习深度学习,请先阅读本文…
什么是 PyTorch? PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群: NumPy 的替代品,可以利用 GPU 的性能进行计算. 深度学习研究平台拥有足够的灵活性和速度 开始学习 Tensors (张量) Tensors 类似于 NumPy 的 ndarrays ,同时  Tensors 可以使用 GPU 进行计算. from future import print_function import torch 构造一个5x3矩阵,不初始化. x = torch.em…
本文用户记录黄埔学院学习的心得,并补充一些内容. 课程2:十行代码高效完成深度学习POC,主讲人为百度深度学习技术平台部:陈泽裕老师. 因为我是CV方向的,所以内容会往CV方向调整一下,有所筛检. 课程主要有以下三个方面的内容: 深度学习POC的基本流程 实用预训练模型应用工具快速验证 通用模型一键检测 十行代码完成工业级文本分类 自动化调参AutoDL Finetuner 一.深度学习POC的基本流程 1.1  深度学习发展历程 2006年,这一年多伦多大学的Geoffrey Hinton教授…
(转载:http://www.36dsj.com/archives/85383)机器学习与人工智能,相信大家已经耳熟能详,随着大规模标记数据的积累.神经网络算法的成熟以及高性能通用GPU的推广,深度学习逐渐成为计算机专家以及大数据科学家的研究重点.近年来,无论是图像的分类.识别和检测,还是语音生成.自然语言处理,甚至是AI下围棋或者打游戏都基于深度学习有了很大的突破.而随着TensorFlow.Caffe等开源框架的发展,深度学习的门槛变得越来越低,甚至初中生都可以轻易实现一个图像分类或者自动驾…
( 转载至: http://www.36dsj.com/archives/98977)  随着人工神经网络算法的成熟.GPU计算能力的提升,深度学习在众多领域都取得了重大突破.本文介绍了微博引入深度学习和搭建深度学习平台的经验,特别是机器学习工作流.控制中心.深度学习模型训练集群.模型在线预测服务等核心部分的设计.架构经验.微博深度学习平台极大地提升了深度学习开发效率和业务迭代速度,提高了深度学习模型效果和业务效果. 人工智能和深度学习 人工智能为机器赋予人的智能.随着计算机计算能力越来越强,在…
python有多混乱我就不多说了.这个混论不仅是指整个python市场混乱,更混乱的还有python的各种附加依赖包.为了一劳永逸解决python的各种依赖包对深度学习造成的影响,本文中采用python的发行版Anaconda. Step1 安装Anaconda 这里不建议使用python3.4以后的Anaconda版本,因为太新的版本(python3.5)不支持python/matlab混合编程.所以为了以后方便,建议使用python2.7的Anaconda版本.Anaconda安装完成后,n…
写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运用 原创 2017-07-28 潘晖 美团点评技术团队 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户…
根据 Gartner 对全球 CIO 的调查结果显示,人工智能将成为 2019 年组织革命的颠覆性力量.对于人工智能来说,算力即正义,成本即能力,利用 Docker 和 Kubernetes 代表云原生技术为 AI 提供了一种新的工作模式,将 GPU 机器放到统一的资源池进行调度和管理,这避免了GPU 资源利用率低下和人工管理的成本.因此,全球主要的容器集群服务厂商 Kubernetes 都提供了 Nvidia GPU 容器集群调度能力,但是通常都是将一个 GPU 卡分配给一个容器.这虽然可以实…
本文始发于个人公众号:TechFlow,原创不易,求个关注 上次给大家推荐了免费的spark集群之后,就有很多小伙伴来问我有没有好的云GPU平台推荐.我一直没给大家推荐,主要原因是我常年使用Mac,对GPU配置了解不深,不过云GPU平台我倒是用过几个,今天就和大家来简单聊聊. Colab 首先来介绍免费的,最著名的免费的平台应该是Colab.Colab是Google提供的免费云服务,并且还支持GPU,所以我们完全可以使用它来做深度学习的学习. Colab嵌入在Google Drive当中,我们首…
深度学习框架集成平台C++ Guide指南 这个指南详细地介绍了神经网络C++的API,并介绍了许多不同的方法来处理模型. 提示 所有框架运行时接口都是相同的,因此本指南适用于所有受支持框架(包括TensorFlow.PyTorch.Keras和TorchScript)中的模型. 导入神经网络 最简单的导入方法如下: #include "neuropod/neuropod.hh" Neuropod neuropod(PATH_TO_MY_MODEL); 其中PATH_TO_MY_MOD…
转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github GitHub 上 57 款最流行的开源深度学习项目 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFl…
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6   原文出处: 我爱计算机 (@tobe迪豪 )    作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MX…
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框架. 将深度卷积神经网络(Convolutional Neural Networks, 简称CNNs)用于图像识别在研究领域吸引着越来越多目光.由于卷积神经网络结构非常适合模型并行的训练,因此以模型并行+数据并行的方式来加速Deep CNNs训练,可预期取得较大收获.Deep CNNs的单机多GPU…
[深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Marian…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:kevinxiaoyu,高级研究员,隶属腾讯TEG-架构平台部,主要研究方向为深度学习异构计算与硬件加速.FPGA云.高速视觉感知等方向的构架设计和优化."深度学习的异构加速技术"系列共有三篇文章,主要在技术层面,对学术界和工业界异构加速的构架演进进行分析. 一.概述:通用=低效 作为通用处理器,CPU (Central Processing Unit) 是计算机中不可或缺的计算核心,结合指令集,完成日常工作中多种多样的计…
http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和…
本文内容节选自由msup主办的第七届TOP100summit,北京一流科技有限公司首席科学家袁进辉(老师木)分享的<让AI简单且强大:深度学习引擎OneFlow背后的技术实践>实录. 北京一流科技有限公司将自动编排并行模式.静态调度.流式执行等创新性技术相融合,构建成一套自动支持数据并行.模型并行及流水并行等多种模式的分布式深度学习框架,降低了分布式训练门槛.极大的提高了硬件使用率.该框架已经成功帮助众多头部互联网公司及人工智能企业提升了大模型训练效率,节约了硬件运营和使用成本,达到了降本增效…
人工智能,用计算机实现人类智能.机器通过大量训练数据训练,程序不断自我学习.修正训练模型.模型本质,一堆参数,描述业务特点.机器学习和深度学习(结合深度神经网络). 传统计算机器下棋,贪婪算法,Alpha-Beta修剪法配合Min-Max算法.AlphaGo,蒙特卡洛树搜索法(Monte Carlo tree search,MCTS)和深度卷积神经网络(deep convolutional neural network,DCNN).估值网络(value network,盘面评估函数),计算盘面分…
OpenPAI:大规模人工智能集群管理平台 2018年5月22日,在微软举办的“新一代人工智能开放科研教育平台暨中国高校人工智能科研教育高峰论坛”上,微软亚洲研究院宣布,携手北京大学.中国科学技术大学.西安交通大学和浙江大学四所国内顶尖高校共建新一代人工智能开放科研教育平台,以推动中国人工智能领域科研与教育事业的发展.作为由微软亚洲研究院为该平台提供的三大关键技术之一,Open Platform for AI(OpenPAI)也备受瞩目. 事实上,随着人工智能技术的快速发展,各种深度学习框架层出…
AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索.推荐.广告.风控.智能调度.语音识别.机器人.无人配送等多个领域,帮助美团3.2亿消费者和400多万商户改善服务和体验,帮大家吃得更好,生活更好. 基于AI技术,美团搭建了世界上规模最大,复杂度最高的多人.多点实时智能配送调度系统:基于AI技术,美团推出了业内第一款大规模落地的企业应用级语音交互产品,为50万骑手配备了智能语…