使用OneFlow搭建神经网络】的更多相关文章

使用OneFlow搭建神经网络 在 识别 MNIST 手写体数字 的例子中,通过 flow.layers 和 flow.nn 中提供的接口搭建了一个简单的 LeNet 网络.下面,将通过LeNet来介绍 Onflow 中网络搭建的核心元素-算子(op)和层(layer). LeNet 是一个主要由卷积层.池化层和全连接层组成的神经网络. 上图中有两类元素,一类是方框代表的运算单元,包括 op 和 layer 两类,比如 conv2d . dense . max_pool2d 等:一类是箭头代表的…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入激活函数, 即添加非线性因素 (线性回归问题跳过此步骤) ⑦ 训练模型 ⑧ 检验模型 ⑨ 使用模型预测数据 ⑩ 保存模型 ⑪ 使用Tensorboard的可视化功能 下面以一个简单的线性回归问题为例: 首先是训练模型的代码: train_model.py # ① 导入模块 import tensor…
1. session对话控制 matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(matrix1,matrix2) #类似于numpy的np.dot(m1,m2) 方法1: sess = tf.Session() result = sess.run(product) print(result) sess.close()>>>[[12]] 方法2: with tf.Sessi…
http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相连接并进行计算,在外界信息的基础上,改变内部的结构,常用来对输入和输出间复杂的关系进行建模. 神经网络由大量的节点和之间的联系构成,负责传递信息和加工信息,神经元也…
TensorFlow笔记-05-反向传播,搭建神经网络的八股 反向传播 反向传播: 训练模型参数,在所有参数上用梯度下降,使用神经网络模型在训练数据上的损失函数最小 损失函数:(loss) 计算得到的预测值 y 与已知答案 y_ 差距 损失函数的计算有很多方法,均方误差MSE是比较常用的方法之一 关于损失函数,会在下一篇仔细讲 均方误差: 求前向传播计算结果与已知答案之差的平方再求平均 用 Tensorflow 函数表示: loss = tf.reduce_mean(tf.square(y-y_…
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential#按层 from keras.layers import Dense, Activation#全连接层 import ma…
一.神经网络的实现过程 1.准备数据集,提取特征,作为输入喂给神经网络       2.搭建神经网络结构,从输入到输出       3.大量特征数据喂给 NN,迭代优化 NN 参数       4.使用训练好的模型预测和分类 二.前向传播   前向传播就是搭建模型的计算过程,可以针对一组输入给出相应的输出. 举例:假如生产一批零件, 体积为 x1, 重量为 x2, 体积和重量就是我们选择的特征,把它们喂入神经网络, 当体积和重量这组数据走过神经网络后会得到一个输出. 假如输入的特征值是:体积 0…
import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Model from keras.layers import Dense, Input import matplotlib.pyplot as plt (x_train,y_train),(x_test,y_test) = mnist.load_data() x_train = x_train.asty…
[pytorch学习笔记]-搭建神经网络进行关系拟合 学习自莫烦python 目标 1.创建一些围绕y=x^2+噪声这个函数的散点 2.用神经网络模型来建立一个可以代表他们关系的线条 建立数据集 import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x=torch.unsqueeze(torch.linspace(-1,1,1…