P4774-[NOI2018]屠龙勇士【EXCRT】】的更多相关文章

P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) 求出一个满足条件的\(x_0\),通解是\(x=x_0+k*\text{gcd}(t,p[i])\) 就是\(x \equiv x_0 (\text{mod }\text{gcd}(t,p[i]))\) 然后就有n个这样的式子,用excrt,合并方程 excrt懒得写了 // luogu-judg…
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{*})\)后龙的血量恰好为\(0\).那么根据题意我们可以列出方程: \[atk_i*x\equiv hp_i(mod \ p_i)\] 这个形式是不是很像中国剩余定理的形式:\(x\equiv b_i(mod \ a_i)\). 事实上我们可以直接将这个方程看做一个同余方程,即\[atk_i*x+p…
链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前驱时,最小值即为后继),和插入,删除操作,所以想到平衡树维护每条龙的剑的攻击力,记为b[i].建议使用非旋treap,非常之好写. 根据题目描述,a[i]为每条龙生命值,p[i]为每条龙回复量.发现能够击杀这条龙的条件可以列成一个方程: \(xb[i]-yp[i]=a[i]\) \(x\) 为攻击次…
传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ p_i) \] 简单处理一下就变成这样: \[ atk_i\times x +p_i \times y=a_i \] 显然可以扩欧搞出一组特解\((x',y')\),那么就有 \[ x=x'(\text{mod}\ \frac{p_i}{\gcd(atk_i,a_i)}) \] 然后扩展中国剩余定理…
传送门 这题真的是送温暖啊qwq,而且最重要的是yyb巨佬在Day2前几天正好学了crt,还写了博客 然而我都没仔细看,结果我就同步赛打铁了QAQ 我们可以先根据题意,使用set维护,求出每次的攻击力 然后对于一条龙,要使得砍到生命值能加到0,那么 攻击力\(a_i\) * 次数\(x\) 要和 血量\(b_i\) 在膜 回复量\(p_i\) 意义下同余,也就是\(a_ix\equiv b_i\mod p_i\) 然后就是n个这样的方程,求最小的x 首先对于每个方程,考虑转化成\(x\equiv…
传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起来可以直接魔改式子了-- 等一下!如果\(a_i > p_i\),\(ATK_ix<a_i\)没把BOSS打死怎么办QAQ 看数据范围,没有特性1(\(a_i \leq p_i\))的点似乎\(p_i=1\)?那不只要保证攻击次数能够把所有BOSS血量打到\(\leq 0\)就行了,,,于是这个顾…
Description Input Output Sample Input 23 33 5 74 6 107 3 91 9 10003 23 5 64 8 71 1 11 1 Sample Output 59-1 Solution 当时同步赛的时候写出来了……只不过忘了是爆$long~long$还是小细节写爆了只有$75$…… 当时蠢的一比直接强上了一颗$splay$强行增加码量……现在觉得当时太蠢了然后就重写了一遍…… 首先对于这个题,每次使用的剑可以发现是固定的,这个可以使用$set$来求出…
首先很明显剑的选择是唯一的,直接用multiset即可. 接下来可以发现每条龙都是一个模线性方程.设攻击第i条龙的剑的攻击力为$s_i$,则$s_ix\equiv a_i\ (mod\ p_i)$. 现在需要将方程化成$x\equiv c_i\ (mod\ m_i)$的形式,从而使用exCRT解决. 变式:$s_ix+p_iy=a_i$,先同除以$gcd(s_i,p_i)$,再使用exgcd解不定方程,求x的最小正整数解. 注意判无解,exCRT结束之后注意要使$x\geqslant max(\…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
题解:求解形如 $A[i]ans\equiv b[i](mod$ $p[i])$ 的 $x$ 的最小正整数解. 考虑只有一个等式,那么可以直接化成 $exgcd$ 的形式:$A[i]ans+p[i]y=b[i],$ 直接求 $ans$ 的正整数解即可. 增量 $M$ 为 $\frac{p[i]}{gcd(A[i],p[i])}$ 那如果有多个式子呢 $?$假设前面的式子得到的最小解为 $ans,$ 增量为 $M.$ 考虑将当前求出的 $ans',M'$ 与 $ans$ 合并. 即 $ans+M\…